Cargando…
Exploiting the brain's network structure in identifying ADHD subjects
Attention Deficit Hyperactive Disorder (ADHD) is a common behavioral problem affecting children. In this work, we investigate the automatic classification of ADHD subjects using the resting state functional magnetic resonance imaging (fMRI) sequences of the brain. We show that brain can be modeled a...
Autores principales: | Dey, Soumyabrata, Rao, A. Ravishankar, Shah, Mubarak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499771/ https://www.ncbi.nlm.nih.gov/pubmed/23162440 http://dx.doi.org/10.3389/fnsys.2012.00075 |
Ejemplares similares
-
Exploiting the Brain’s Network Structure for Automatic Identification of ADHD Subjects
por: Dey, Soumyabrata, et al.
Publicado: (2023) -
Attributed graph distance measure for automatic detection of attention deficit hyperactive disordered subjects
por: Dey, Soumyabrata, et al.
Publicado: (2014) -
Network, Anatomical, and Non-Imaging Measures for the Prediction of ADHD Diagnosis in Individual Subjects
por: Bohland, Jason W., et al.
Publicado: (2012) -
The Dynamic Properties of a Brain Network During Spatial Working Memory Tasks in College Students With ADHD Traits
por: Jang, Kyoung-Mi, et al.
Publicado: (2020) -
Toward Reflective Spiking Neural Networks Exploiting Memristive Devices
por: Makarov, Valeri A., et al.
Publicado: (2022)