Cargando…

Comparative Genomics Guided Discovery of Two Missing Archaeal Enzyme Families Involved in the Biosynthesis of the Pterin Moiety of Tetrahydromethanopterin and Tetrahydrofolate

[Image: see text] C-1 carriers are essential cofactors in all domains of life, and in Archaea, these can be derivatives of tetrahydromethanopterin (H(4)-MPT) or tetrahydrofolate (H(4)-folate). Their synthesis requires 6-hydroxymethyl-7,8-dihydropterin diphosphate (6-HMDP) as the precursor, but the n...

Descripción completa

Detalles Bibliográficos
Autores principales: Crécy-Lagard, Valérie de, Phillips, Gabriela, Grochowski, Laura L., Yacoubi, Basma El, Jenney, Francis, Adams, Michael W. W., Murzin, Alexey G., White, Robert H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2012
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500442/
https://www.ncbi.nlm.nih.gov/pubmed/22931285
http://dx.doi.org/10.1021/cb300342u
Descripción
Sumario:[Image: see text] C-1 carriers are essential cofactors in all domains of life, and in Archaea, these can be derivatives of tetrahydromethanopterin (H(4)-MPT) or tetrahydrofolate (H(4)-folate). Their synthesis requires 6-hydroxymethyl-7,8-dihydropterin diphosphate (6-HMDP) as the precursor, but the nature of pathways that lead to its formation were unknown until the recent discovery of the GTP cyclohydrolase IB/MptA family that catalyzes the first step, the conversion of GTP to dihydroneopterin 2′,3′-cyclic phosphate or 7,8-dihydroneopterin triphosphate [El Yacoubi, B.; et al. (2006) J. Biol. Chem., 281, 37586–37593 and Grochowski, L. L.; et al. (2007) Biochemistry46, 6658–6667]. Using a combination of comparative genomics analyses, heterologous complementation tests, and in vitro assays, we show that the archaeal protein families COG2098 and COG1634 specify two of the missing 6-HMDP synthesis enzymes. Members of the COG2098 family catalyze the formation of 6-hydroxymethyl-7,8-dihydropterin from 7,8-dihydroneopterin, while members of the COG1634 family catalyze the formation of 6-HMDP from 6-hydroxymethyl-7,8-dihydropterin. The discovery of these missing genes solves a long-standing mystery and provides novel examples of convergent evolutions where proteins of dissimilar architectures perform the same biochemical function.