Cargando…
Identifying influential observations in Bayesian models by using Markov chain Monte Carlo
In statistical modelling, it is often important to know how much parameter estimates are influenced by particular observations. An attractive approach is to re-estimate the parameters with each observation deleted in turn, but this is computationally demanding when fitting models by using Markov cha...
Autores principales: | Jackson, Dan, White, Ian R, Carpenter, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500673/ https://www.ncbi.nlm.nih.gov/pubmed/21905065 http://dx.doi.org/10.1002/sim.4356 |
Ejemplares similares
-
Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches
por: Li, Michael, et al.
Publicado: (2018) -
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
Bayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in the presence of uncertainty
por: Green, P. L., et al.
Publicado: (2015) -
Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
por: Howison, Mark, et al.
Publicado: (2014) -
Markov chain Monte Carlo in practice
por: Gilks, W R, et al.
Publicado: (1995)