Cargando…

The conserved kinase SRPK regulates karyosome formation and spindle microtubule assembly in Drosophila oocytes

In Drosophila oocytes, after the completion of recombination, meiotic chromosomes form a compact cluster called the karyosome within the nucleus, and later assemble spindle microtubules without centrosomes. Although these oocyte-specific phenomena are also observed in humans, their molecular basis i...

Descripción completa

Detalles Bibliográficos
Autores principales: Loh, Benjamin J., Cullen, C. Fiona, Vogt, Nina, Ohkura, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500864/
https://www.ncbi.nlm.nih.gov/pubmed/22854045
http://dx.doi.org/10.1242/jcs.107979
Descripción
Sumario:In Drosophila oocytes, after the completion of recombination, meiotic chromosomes form a compact cluster called the karyosome within the nucleus, and later assemble spindle microtubules without centrosomes. Although these oocyte-specific phenomena are also observed in humans, their molecular basis is not well understood. Here, we report essential roles for the conserved kinase SRPK in both karyosome formation and spindle microtubule assembly in oocytes. We have identified a female-sterile srpk mutant through a cytological screen for karyosome defects. Unlike most karyosome mutants, the karyosome defect is independent of the meiotic recombination checkpoint. Heterochromatin clustering found within the wild-type karyosome is disrupted in the mutant. Strikingly, a loss of SRPK severely prevents microtubule assembly for acentrosomal spindles in mature oocytes. Subsequently, bi-orientation and segregation of meiotic chromosomes are also defective. Therefore, this study demonstrates new roles of this conserved kinase in two independent meiotic steps specific to oocytes.