Cargando…
Support vector machines for spike pattern classification with a leaky integrate-and-fire neuron
Spike pattern classification is a key topic in machine learning, computational neuroscience, and electronic device design. Here, we offer a new supervised learning rule based on Support Vector Machines (SVM) to determine the synaptic weights of a leaky integrate-and-fire (LIF) neuron model for spike...
Autores principales: | Ambard, Maxime, Rotter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501200/ https://www.ncbi.nlm.nih.gov/pubmed/23181017 http://dx.doi.org/10.3389/fncom.2012.00078 |
Ejemplares similares
-
Reconstructing Stimuli from the Spike Times of Leaky Integrate and Fire Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2011) -
Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
por: Kim, Youngeun, et al.
Publicado: (2023) -
Rate Dynamics of Leaky Integrate-and-Fire Neurons with Strong Synapses
por: Nordlie, Eilen, et al.
Publicado: (2010) -
Leaky Integrate-and-Fire Neuron Circuit Based on Floating-Gate Integrator
por: Kornijcuk, Vladimir, et al.
Publicado: (2016) -
Highly efficient neuromorphic learning system of spiking neural network with multi-compartment leaky integrate-and-fire neurons
por: Gao, Tian, et al.
Publicado: (2022)