Cargando…
Identifying clinical course patterns in SMS data using cluster analysis
BACKGROUND: Recently, there has been interest in using the short message service (SMS or text messaging), to gather frequent information on the clinical course of individual patients. One possible role for identifying clinical course patterns is to assist in exploring clinically important subgroups...
Autores principales: | Kent, Peter, Kongsted, Alice |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502127/ https://www.ncbi.nlm.nih.gov/pubmed/22748197 http://dx.doi.org/10.1186/2045-709X-20-20 |
Ejemplares similares
-
A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB
por: Kent, Peter, et al.
Publicado: (2014) -
Contrasting real time quantitative measures (weekly SMS) to patients’ retrospective appraisal of their one-year’s course of low back pain; a probing mixed-methods study
por: Hestbaek, Lise, et al.
Publicado: (2019) -
Could the clinical interpretability of subgroups detected using clustering methods be improved by using a novel two-stage approach?
por: Kent, Peter, et al.
Publicado: (2015) -
Exploring visual pain trajectories in neck pain patients, using clinical course, SMS-based patterns, and patient characteristics: a cohort study
por: Irgens, Pernille, et al.
Publicado: (2022) -
Comparison between data obtained through real-time data capture by SMS and a retrospective telephone interview
por: Johansen, Bendt, et al.
Publicado: (2010)