Cargando…
Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning
BACKGROUND: Ventricular Fibrillation (VF) is a common presenting dysrhythmia in the setting of cardiac arrest whose main treatment is defibrillation through direct current countershock to achieve return of spontaneous circulation. However, often defibrillation is unsuccessful and may even lead to th...
Autores principales: | Shandilya, Sharad, Ward, Kevin, Kurz, Michael, Najarian, Kayvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502402/ https://www.ncbi.nlm.nih.gov/pubmed/23066818 http://dx.doi.org/10.1186/1472-6947-12-116 |
Ejemplares similares
-
Integration of Attributes from Non-Linear Characterization of Cardiovascular Time-Series for Prediction of Defibrillation Outcomes
por: Shandilya, Sharad, et al.
Publicado: (2016) -
Characterization of clinical patterns of dengue patients using an unsupervised machine learning approach
por: Macedo Hair, Gleicy, et al.
Publicado: (2019) -
Gait characterization in golden retriever muscular dystrophy dogs using linear discriminant analysis
por: Fraysse, Bodvaël, et al.
Publicado: (2017) -
Are we there yet? A machine learning architecture to predict organotropic metastases
por: Skaro, Michael, et al.
Publicado: (2021) -
Machine learning based refined differential gene expression analysis of pediatric sepsis
por: Abbas, Mostafa, et al.
Publicado: (2020)