Cargando…
Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering
Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H(2) atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are ch...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502530/ https://www.ncbi.nlm.nih.gov/pubmed/23031449 http://dx.doi.org/10.1186/1556-276X-7-547 |
_version_ | 1782250360455299072 |
---|---|
author | Saxena, Nupur Kumar, Pragati Kabiraj, Debulal Kanjilal, Dinakar |
author_facet | Saxena, Nupur Kumar, Pragati Kabiraj, Debulal Kanjilal, Dinakar |
author_sort | Saxena, Nupur |
collection | PubMed |
description | Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H(2) atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters. |
format | Online Article Text |
id | pubmed-3502530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-35025302012-11-21 Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering Saxena, Nupur Kumar, Pragati Kabiraj, Debulal Kanjilal, Dinakar Nanoscale Res Lett Nano Express Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H(2) atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters. Springer 2012-10-03 /pmc/articles/PMC3502530/ /pubmed/23031449 http://dx.doi.org/10.1186/1556-276X-7-547 Text en Copyright ©2012 Saxena et al.; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nano Express Saxena, Nupur Kumar, Pragati Kabiraj, Debulal Kanjilal, Dinakar Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering |
title | Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering |
title_full | Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering |
title_fullStr | Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering |
title_full_unstemmed | Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering |
title_short | Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering |
title_sort | opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering |
topic | Nano Express |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502530/ https://www.ncbi.nlm.nih.gov/pubmed/23031449 http://dx.doi.org/10.1186/1556-276X-7-547 |
work_keys_str_mv | AT saxenanupur optostructuralstudiesofwelldispersedsiliconnanocrystalsgrownbyatombeamsputtering AT kumarpragati optostructuralstudiesofwelldispersedsiliconnanocrystalsgrownbyatombeamsputtering AT kabirajdebulal optostructuralstudiesofwelldispersedsiliconnanocrystalsgrownbyatombeamsputtering AT kanjilaldinakar optostructuralstudiesofwelldispersedsiliconnanocrystalsgrownbyatombeamsputtering |