Cargando…

Photonic bandgap of inverse opals prepared from core-shell spheres

In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shri...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bo-Tau, Lin, Ya-Li, Huang, Shao-Xian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503612/
https://www.ncbi.nlm.nih.gov/pubmed/22894600
http://dx.doi.org/10.1186/1556-276X-7-457
Descripción
Sumario:In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shrinkage ratio of the inverse opal photonic crystals prepared from the core-shell spheres was significantly reduced from 14.7% to within 3%. We suspected that the improvement resulted from the confinement of silica shell to the contraction of PS space during calcination. Due to the shell effect, the inverse opals prepared from the core-shell spheres have higher filling fraction and larger wavelength of stop band maximum.