Cargando…
Paralemmin-1 is over-expressed in estrogen-receptor positive breast cancers
BACKGROUND: Paralemmin-1 is a phosphoprotein lipid-anchored to the cytoplasmic face of membranes where it functions in membrane dynamics, maintenance of cell shape, and process formation. Expression of paralemmin-1 and its major splice variant (Δ exon 8) as well as the extent of posttranslational mo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503693/ https://www.ncbi.nlm.nih.gov/pubmed/22574838 http://dx.doi.org/10.1186/1475-2867-12-17 |
Sumario: | BACKGROUND: Paralemmin-1 is a phosphoprotein lipid-anchored to the cytoplasmic face of membranes where it functions in membrane dynamics, maintenance of cell shape, and process formation. Expression of paralemmin-1 and its major splice variant (Δ exon 8) as well as the extent of posttranslational modifications are tissue- and development-specific. Paralemmin-1 expression in normal breast and breast cancer tissue has not been described previously. RESULTS: Paralemmin-1 mRNA and protein expression was evaluated in ten breast cell lines, 26 primary tumors, and 10 reduction mammoplasty (RM) tissues using real time RT-PCR. Paralemmin-1 splice variants were assessed in tumor and RM tissues using a series of primers and RT-PCR. Paralemmin-1 protein expression was examined in cell lines using Western Blots and in 31 ductal carcinomas in situ, 65 infiltrating ductal carcinomas, and 40 RM tissues using immunohistochemistry. Paralemmin-1 mRNA levels were higher in breast cancers than in RM tissue and estrogen receptor (ER)-positive tumors had higher transcript levels than ER-negative tumors. The Δ exon 8 splice variant was detected more frequently in tumor than in RM tissues. Protein expression was consistent with mRNA results showing higher paralemmin-1 expression in ER-positive tumors. CONCLUSIONS: The differential expression of paralemmin-1 in a subset of breast cancers suggests the existence of variation in membrane dynamics that may be exploited to improve diagnosis or provide a therapeutic target. |
---|