Cargando…
Establishment of a conditional transgenic mouse model expressing human uncoupling protein 2 in vascular smooth muscle cells
Increased oxidative stress is involved in the development of vascular dysfunction and remodeling. Uncoupling protein 2 (UCP2) regulates the production of reactive oxygen species in vascular smooth muscle cells (SMCs). To promote the study of the role of UCP2 in vascular diseases, a transgenic mouse...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503749/ https://www.ncbi.nlm.nih.gov/pubmed/23181133 http://dx.doi.org/10.3892/etm.2012.620 |
Sumario: | Increased oxidative stress is involved in the development of vascular dysfunction and remodeling. Uncoupling protein 2 (UCP2) regulates the production of reactive oxygen species in vascular smooth muscle cells (SMCs). To promote the study of the role of UCP2 in vascular diseases, a transgenic mouse model expressing human UCP2 (hUCP2) in vascular SMCs was established. We constructed a plasmid carrying the 2.3 kb rabbit smooth muscle myosin heavy chain promoter and the hUCP2 gene. We used this plasmid to produce transgenic mice by pro-nuclear microinjection. Six offspring were identified as founder mice that were used to establish a transgenic mouse lineage. The transgenic mice showed a significant increase in hUCP mRNA expression in the aorta. Moreover, hUCP2 overexpression inhibited the production of superoxide and increased the bioavailability of nitric oxide (NO). In this study, we established a hUCP2 transgenic mouse model, which will enable further studies on the role of UCP2 in vascular dysfunction and remodeling. |
---|