Cargando…
PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes
Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503969/ https://www.ncbi.nlm.nih.gov/pubmed/23185633 http://dx.doi.org/10.1371/journal.pone.0050500 |
_version_ | 1782250543879553024 |
---|---|
author | Kanakasabai, Saravanan Pestereva, Ecaterina Chearwae, Wanida Gupta, Sushil K. Ansari, Saif Bright, John J. |
author_facet | Kanakasabai, Saravanan Pestereva, Ecaterina Chearwae, Wanida Gupta, Sushil K. Ansari, Saif Bright, John J. |
author_sort | Kanakasabai, Saravanan |
collection | PubMed |
description | Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ(12,14)-Prostaglandin J(2) (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases. |
format | Online Article Text |
id | pubmed-3503969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35039692012-11-26 PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes Kanakasabai, Saravanan Pestereva, Ecaterina Chearwae, Wanida Gupta, Sushil K. Ansari, Saif Bright, John J. PLoS One Research Article Neural stem cells (NSCs) are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS). Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA) and PPARγ agonist ciglitazone or 15-Deoxy-Δ(12,14)-Prostaglandin J(2) (15d-PGJ2) resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3–7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3–7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases. Public Library of Science 2012-11-21 /pmc/articles/PMC3503969/ /pubmed/23185633 http://dx.doi.org/10.1371/journal.pone.0050500 Text en © 2012 Kanakasabai et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kanakasabai, Saravanan Pestereva, Ecaterina Chearwae, Wanida Gupta, Sushil K. Ansari, Saif Bright, John J. PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes |
title | PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes |
title_full | PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes |
title_fullStr | PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes |
title_full_unstemmed | PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes |
title_short | PPARγ Agonists Promote Oligodendrocyte Differentiation of Neural Stem Cells by Modulating Stemness and Differentiation Genes |
title_sort | pparγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503969/ https://www.ncbi.nlm.nih.gov/pubmed/23185633 http://dx.doi.org/10.1371/journal.pone.0050500 |
work_keys_str_mv | AT kanakasabaisaravanan ppargagonistspromoteoligodendrocytedifferentiationofneuralstemcellsbymodulatingstemnessanddifferentiationgenes AT pesterevaecaterina ppargagonistspromoteoligodendrocytedifferentiationofneuralstemcellsbymodulatingstemnessanddifferentiationgenes AT chearwaewanida ppargagonistspromoteoligodendrocytedifferentiationofneuralstemcellsbymodulatingstemnessanddifferentiationgenes AT guptasushilk ppargagonistspromoteoligodendrocytedifferentiationofneuralstemcellsbymodulatingstemnessanddifferentiationgenes AT ansarisaif ppargagonistspromoteoligodendrocytedifferentiationofneuralstemcellsbymodulatingstemnessanddifferentiationgenes AT brightjohnj ppargagonistspromoteoligodendrocytedifferentiationofneuralstemcellsbymodulatingstemnessanddifferentiationgenes |