Cargando…
eThread: A Highly Optimized Machine Learning-Based Approach to Meta-Threading and the Modeling of Protein Tertiary Structures
Template-based modeling that employs various meta-threading techniques is currently the most accurate, and consequently the most commonly used, approach for protein structure prediction. Despite the evident progress in this field, accurate structure models cannot be constructed for a significant fra...
Autores principales: | Brylinski, Michal, Lingam, Daswanth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503980/ https://www.ncbi.nlm.nih.gov/pubmed/23185577 http://dx.doi.org/10.1371/journal.pone.0050200 |
Ejemplares similares
-
Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics
por: Ragothaman, Anjani, et al.
Publicado: (2014) -
Unleashing the power of meta-threading for evolution/structure-based function inference of proteins
por: Brylinski, Michal
Publicado: (2013) -
FINDSITE(LHM): A Threading-Based Approach to Ligand Homology
Modeling
por: Brylinski, Michal, et al.
Publicado: (2009) -
PATH - Prediction of Amyloidogenicity by Threading and Machine Learning
por: Wojciechowski, Jakub W., et al.
Publicado: (2020) -
Fixation stability comparison of bone screws based on thread design: buttress thread, triangle thread, and square thread
por: Feng, Xiaoreng, et al.
Publicado: (2022)