Cargando…

Individual and Population-Level Impacts of an Emerging Poxvirus Disease in a Wild Population of Great Tits

Emerging infectious diseases of wildlife can have severe effects on host populations and constitute a pressing problem for biodiversity conservation. Paridae pox is an unusually severe form of avipoxvirus infection that has recently been identified as an emerging infectious disease particularly affe...

Descripción completa

Detalles Bibliográficos
Autores principales: Lachish, Shelly, Bonsall, Michael B., Lawson, Becki, Cunningham, Andrew A., Sheldon, Ben C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504048/
https://www.ncbi.nlm.nih.gov/pubmed/23185263
http://dx.doi.org/10.1371/journal.pone.0048545
Descripción
Sumario:Emerging infectious diseases of wildlife can have severe effects on host populations and constitute a pressing problem for biodiversity conservation. Paridae pox is an unusually severe form of avipoxvirus infection that has recently been identified as an emerging infectious disease particularly affecting an abundant songbird, the great tit (Parus major), in Great Britain. In this study, we study the invasion and establishment of Paridae pox in a long-term monitored population of wild great tits to (i) quantify the impact of this novel pathogen on host fitness and (ii) determine the potential threat it poses to population persistence. We show that Paridae pox significantly reduces the reproductive output of great tits by reducing the ability of parents to fledge young successfully and rear those young to independence. Our results also suggested that pathogen transmission from diseased parents to their offspring was possible, and that disease entails severe mortality costs for affected chicks. Application of multistate mark-recapture modelling showed that Paridae pox causes significant reductions to host survival, with particularly large effects observed for juvenile survival. Using an age-structured population model, we demonstrate that Paridae pox has the potential to reduce population growth rate, primarily through negative impacts on host survival rates. However, at currently observed prevalence, significant disease-induced population decline seems unlikely, although pox prevalence may be underestimated if capture probability of diseased individuals is low. Despite this, because pox-affected model populations exhibited lower average growth rates, this emerging infectious disease has the potential to reduce the resilience of populations to other environmental factors that reduce population size.