Cargando…

Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana

BACKGROUND: The transition from vegetative to reproductive stages marks a major milestone in plant development. It is clear that global change factors (e.g., increasing [CO(2)] and temperature) have already had and will continue to have a large impact on plant flowering times in the future. Increasi...

Descripción completa

Detalles Bibliográficos
Autores principales: Ward, Joy K., Samanta Roy, Debosree, Chatterjee, Iera, Bone, Courtney R., Springer, Clint J., Kelly, John K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504057/
https://www.ncbi.nlm.nih.gov/pubmed/23185291
http://dx.doi.org/10.1371/journal.pone.0049028
_version_ 1782250564248141824
author Ward, Joy K.
Samanta Roy, Debosree
Chatterjee, Iera
Bone, Courtney R.
Springer, Clint J.
Kelly, John K.
author_facet Ward, Joy K.
Samanta Roy, Debosree
Chatterjee, Iera
Bone, Courtney R.
Springer, Clint J.
Kelly, John K.
author_sort Ward, Joy K.
collection PubMed
description BACKGROUND: The transition from vegetative to reproductive stages marks a major milestone in plant development. It is clear that global change factors (e.g., increasing [CO(2)] and temperature) have already had and will continue to have a large impact on plant flowering times in the future. Increasing atmospheric [CO(2)] has recently been shown to affect flowering time, and may produce even greater responses than increasing temperature. Much is known about the genes influencing flowering time, although their relevance to changing [CO(2)] is not well understood. Thus, we present the first study to identify QTL (Quantitative Trait Loci) that affect flowering time at elevated [CO(2)] in Arabidopsis thaliana. METHODOLOGY/PRINCIPAL FINDINGS: We developed our mapping population by crossing a genotype previously selected for high fitness at elevated [CO(2)] (SG, Selection Genotype) to a Cape Verde genotype (Cvi-0). SG exhibits delayed flowering at elevated [CO(2)], whereas Cvi-0 is non-responsive to elevated [CO(2)] for flowering time. We mapped one major QTL to the upper portion of chromosome 1 that explains 1/3 of the difference in flowering time between current and elevated [CO(2)] between the SG and Cvi-0 parents. This QTL also alters the stage at which flowering occurs, as determined from higher rosette leaf number at flowering in RILs (Recombinant Inbred Lines) harboring the SG allele. A follow-up study using Arabidopsis mutants for flowering time genes within the significant QTL suggests MOTHER OF FT AND TFL1 (MFT) as a potential candidate gene for altered flowering time at elevated [CO(2)]. CONCLUSION/SIGNIFICANCE: This work sheds light on the underlying genetic architecture that controls flowering time at elevated [CO(2)]. Prior to this work, very little to nothing was known about these mechanisms at the genomic level. Such a broader understanding will be key for better predicting shifts in plant phenology and for developing successful crops for future environments.
format Online
Article
Text
id pubmed-3504057
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35040572012-11-26 Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana Ward, Joy K. Samanta Roy, Debosree Chatterjee, Iera Bone, Courtney R. Springer, Clint J. Kelly, John K. PLoS One Research Article BACKGROUND: The transition from vegetative to reproductive stages marks a major milestone in plant development. It is clear that global change factors (e.g., increasing [CO(2)] and temperature) have already had and will continue to have a large impact on plant flowering times in the future. Increasing atmospheric [CO(2)] has recently been shown to affect flowering time, and may produce even greater responses than increasing temperature. Much is known about the genes influencing flowering time, although their relevance to changing [CO(2)] is not well understood. Thus, we present the first study to identify QTL (Quantitative Trait Loci) that affect flowering time at elevated [CO(2)] in Arabidopsis thaliana. METHODOLOGY/PRINCIPAL FINDINGS: We developed our mapping population by crossing a genotype previously selected for high fitness at elevated [CO(2)] (SG, Selection Genotype) to a Cape Verde genotype (Cvi-0). SG exhibits delayed flowering at elevated [CO(2)], whereas Cvi-0 is non-responsive to elevated [CO(2)] for flowering time. We mapped one major QTL to the upper portion of chromosome 1 that explains 1/3 of the difference in flowering time between current and elevated [CO(2)] between the SG and Cvi-0 parents. This QTL also alters the stage at which flowering occurs, as determined from higher rosette leaf number at flowering in RILs (Recombinant Inbred Lines) harboring the SG allele. A follow-up study using Arabidopsis mutants for flowering time genes within the significant QTL suggests MOTHER OF FT AND TFL1 (MFT) as a potential candidate gene for altered flowering time at elevated [CO(2)]. CONCLUSION/SIGNIFICANCE: This work sheds light on the underlying genetic architecture that controls flowering time at elevated [CO(2)]. Prior to this work, very little to nothing was known about these mechanisms at the genomic level. Such a broader understanding will be key for better predicting shifts in plant phenology and for developing successful crops for future environments. Public Library of Science 2012-11-21 /pmc/articles/PMC3504057/ /pubmed/23185291 http://dx.doi.org/10.1371/journal.pone.0049028 Text en © 2012 Ward et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ward, Joy K.
Samanta Roy, Debosree
Chatterjee, Iera
Bone, Courtney R.
Springer, Clint J.
Kelly, John K.
Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana
title Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana
title_full Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana
title_fullStr Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana
title_full_unstemmed Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana
title_short Identification of a Major QTL That Alters Flowering Time at Elevated [CO(2)] in Arabidopsis thaliana
title_sort identification of a major qtl that alters flowering time at elevated [co(2)] in arabidopsis thaliana
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504057/
https://www.ncbi.nlm.nih.gov/pubmed/23185291
http://dx.doi.org/10.1371/journal.pone.0049028
work_keys_str_mv AT wardjoyk identificationofamajorqtlthataltersfloweringtimeatelevatedco2inarabidopsisthaliana
AT samantaroydebosree identificationofamajorqtlthataltersfloweringtimeatelevatedco2inarabidopsisthaliana
AT chatterjeeiera identificationofamajorqtlthataltersfloweringtimeatelevatedco2inarabidopsisthaliana
AT bonecourtneyr identificationofamajorqtlthataltersfloweringtimeatelevatedco2inarabidopsisthaliana
AT springerclintj identificationofamajorqtlthataltersfloweringtimeatelevatedco2inarabidopsisthaliana
AT kellyjohnk identificationofamajorqtlthataltersfloweringtimeatelevatedco2inarabidopsisthaliana