Cargando…
Cellular Signal Mechanisms of Reward-Related Plasticity in the Hippocampus
The hippocampus has the extraordinary capacity to process and store information. Consequently, there is an intense interest in the mechanisms that underline learning and memory. Synaptic plasticity has been hypothesized to be the neuronal substrate for learning. Ca(2+) and Ca(2+)-activated kinases c...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504448/ https://www.ncbi.nlm.nih.gov/pubmed/23213575 http://dx.doi.org/10.1155/2012/945373 |
Sumario: | The hippocampus has the extraordinary capacity to process and store information. Consequently, there is an intense interest in the mechanisms that underline learning and memory. Synaptic plasticity has been hypothesized to be the neuronal substrate for learning. Ca(2+) and Ca(2+)-activated kinases control cellular processes of most forms of hippocampal synapse plasticity. In this paper, I aim to integrate our current understanding of Ca(2+)-mediated synaptic plasticity and metaplasticity in motivational and reward-related learning in the hippocampus. I will introduce two representative neuromodulators that are widely studied in reward-related learning (e.g., ghrelin and endocannabinoids) and show how they might contribute to hippocampal neuron activities and Ca(2+)-mediated signaling processes in synaptic plasticity. Additionally, I will discuss functional significance of these two systems and their signaling pathways for its relevance to maladaptive reward learning leading to addiction. |
---|