Cargando…

Identifying stage-specific protein subnetworks for colorectal cancer

BACKGROUND: In recent years, many algorithms have been developed for network-based analysis of differential gene expression in complex diseases. These algorithms use protein-protein interaction (PPI) networks as an integrative framework and identify subnetworks that are coordinately dysregulated in...

Descripción completa

Detalles Bibliográficos
Autores principales: Erten, Sinan, Chowdhury, Salim A, Guan, Xiaowei, Nibbe, Rod K, Barnholtz-Sloan, Jill S, Chance, Mark R, Koyutürk, Mehmet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504924/
https://www.ncbi.nlm.nih.gov/pubmed/23173715
http://dx.doi.org/10.1186/1753-6561-6-S7-S1
Descripción
Sumario:BACKGROUND: In recent years, many algorithms have been developed for network-based analysis of differential gene expression in complex diseases. These algorithms use protein-protein interaction (PPI) networks as an integrative framework and identify subnetworks that are coordinately dysregulated in the phenotype of interest. MOTIVATION: While such dysregulated subnetworks have demonstrated significant improvement over individual gene markers for classifying phenotype, the current state-of-the-art in dysregulated subnetwork discovery is almost exclusively limited to binary phenotype classes. However, many clinical applications require identification of molecular markers for multiple classes. APPROACH: We consider the problem of discovering groups of genes whose expression signatures can discriminate multiple phenotype classes. We consider two alternate formulations of this problem (i) an all-vs-all approach that aims to discover subnetworks distinguishing all classes, (ii) a one-vs-all approach that aims to discover subnetworks distinguishing each class from the rest of the classes. For the one-vs-all formulation, we develop a set-cover based algorithm, which aims to identify groups of genes such that at least one gene in the group exhibits differential expression in the target class. RESULTS: We test the proposed algorithms in the context of predicting stages of colorectal cancer. Our results show that the set-cover based algorithm identifying "stage-specific" subnetworks outperforms the all-vs-all approaches in classification. We also investigate the merits of utilizing PPI networks in the search for multiple markers, and show that, with correct parameter settings, network-guided search improves performance. Furthermore, we show that assessing statistical significance when selecting features greatly improves classification performance.