Cargando…
TiO(2)-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%
Combining carbon nanotubes (CNTs), graphene or conducting polymers with conventional silicon wafers leads to promising solar cell architectures with rapidly improved power conversion efficiency until recently. Here, we report CNT-Si junction solar cells with efficiencies reaching 15% by coating a Ti...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504926/ https://www.ncbi.nlm.nih.gov/pubmed/23181192 http://dx.doi.org/10.1038/srep00884 |
Sumario: | Combining carbon nanotubes (CNTs), graphene or conducting polymers with conventional silicon wafers leads to promising solar cell architectures with rapidly improved power conversion efficiency until recently. Here, we report CNT-Si junction solar cells with efficiencies reaching 15% by coating a TiO(2) antireflection layer and doping CNTs with oxidative chemicals, under air mass (AM 1.5) illumination at a calibrated intensity of 100 mW/cm(2) and an active device area of 15 mm(2). The TiO(2) layer significantly inhibits light reflectance from the Si surface, resulting in much enhanced short-circuit current (by 30%) and external quantum efficiency. Our method is simple, well-controlled, and very effective in boosting the performance of CNT-Si solar cells. |
---|