Cargando…
The partitioned LASSO-patternsearch algorithm with application to gene expression data
BACKGROUND: In systems biology, the task of reverse engineering gene pathways from data has been limited not just by the curse of dimensionality (the interaction space is huge) but also by systematic error in the data. The gene expression barcode reduces spurious association driven by batch effects...
Autores principales: | Shi, Weiliang, Wahba, Grace, Irizarry, Rafael A, Bravo, Hector Corrada, Wright, Stephen J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505477/ https://www.ncbi.nlm.nih.gov/pubmed/22587526 http://dx.doi.org/10.1186/1471-2105-13-98 |
Ejemplares similares
-
Detecting disease-causing genes by LASSO-Patternsearch algorithm
por: Shi, Weiliang, et al.
Publicado: (2007) -
Supervised group Lasso with applications to microarray data analysis
por: Ma, Shuangge, et al.
Publicado: (2007) -
Overcoming bias and systematic errors in next generation sequencing data
por: Taub, Margaret A, et al.
Publicado: (2010) -
Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis
por: Gunady, Mohamed K, et al.
Publicado: (2019) -
DHPV: a distributed algorithm for large-scale graph partitioning
por: Adoni, Wilfried Yves Hamilton, et al.
Publicado: (2020)