Cargando…

MHC Class I Cross-Presentation by Dendritic Cells Counteracts Viral Immune Evasion

DCs very potently activate CD8(+) T cells specific for viral peptides bound to MHC class I molecules. However, many viruses have evolved immune evasion mechanisms, which inactivate infected DCs and might reduce priming of T cells. Then MHC class I cross-presentation of exogenous viral Ag by non-infe...

Descripción completa

Detalles Bibliográficos
Autores principales: Nopora, Katrin, Bernhard, Caroline A., Ried, Christine, Castello, Alejandro A., Murphy, Kenneth M., Marconi, Peggy, Koszinowski, Ulrich, Brocker, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505839/
https://www.ncbi.nlm.nih.gov/pubmed/23189079
http://dx.doi.org/10.3389/fimmu.2012.00348
Descripción
Sumario:DCs very potently activate CD8(+) T cells specific for viral peptides bound to MHC class I molecules. However, many viruses have evolved immune evasion mechanisms, which inactivate infected DCs and might reduce priming of T cells. Then MHC class I cross-presentation of exogenous viral Ag by non-infected DCs may become crucial to assure CD8(+) T cell responses. Although many vital functions of infected DCs are inhibited in vitro by many different viruses, the contributions of cross-presentation to T cell immunity when confronted with viral immune inactivation in vivo has not been demonstrated up to now, and remains controversial. Here we show that priming of Herpes Simplex Virus (HSV)-, but not murine cytomegalovirus (mCMV)-specific CD8(+) T cells was severely reduced in mice with a DC-specific cross-presentation deficiency. In contrast, while CD8(+) T cell responses to mutant HSV, which lacks crucial inhibitory genes, also depended on CD8α(+) DCs, they were independent of cross-presentation. Therefore HSV-specific CTL-responses entirely depend on the CD8α(+) DC subset, which present via direct or cross-presentation mechanisms depending on the immune evasion equipment of virus. Our data establish the contribution of cross-presentation to counteract viral immune evasion mechanisms in some, but not all viruses.