Cargando…

Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract

Hfq is a post-transcriptional regulator that plays a key role in bacterial gene expression by binding AU-rich sequences and A-tracts to facilitate the annealing of sRNAs to target mRNAs and to affect RNA stability. To understand how Hfq from the Gram-positive bacterium Staphylococcus aureus (Sa) bin...

Descripción completa

Detalles Bibliográficos
Autores principales: Horstmann, Nicola, Orans, Jillian, Valentin-Hansen, Poul, Shelburne, Samuel A., Brennan, Richard G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505971/
https://www.ncbi.nlm.nih.gov/pubmed/22965117
http://dx.doi.org/10.1093/nar/gks809
_version_ 1782250838683549696
author Horstmann, Nicola
Orans, Jillian
Valentin-Hansen, Poul
Shelburne, Samuel A.
Brennan, Richard G.
author_facet Horstmann, Nicola
Orans, Jillian
Valentin-Hansen, Poul
Shelburne, Samuel A.
Brennan, Richard G.
author_sort Horstmann, Nicola
collection PubMed
description Hfq is a post-transcriptional regulator that plays a key role in bacterial gene expression by binding AU-rich sequences and A-tracts to facilitate the annealing of sRNAs to target mRNAs and to affect RNA stability. To understand how Hfq from the Gram-positive bacterium Staphylococcus aureus (Sa) binds A-tract RNA, we determined the crystal structure of an Sa Hfq–adenine oligoribonucleotide complex. The structure reveals a bipartite RNA-binding motif on the distal face that is composed of a purine nucleotide-specificity site (R-site) and a non-discriminating linker site (L-site). The (R–L)-binding motif, which is also utilized by Bacillus subtilis Hfq to bind (AG)(3)A, differs from the (A–R–N) tripartite poly(A) RNA-binding motif of Escherichia coli Hfq whereby the Sa Hfq R-site strongly prefers adenosine, is more aromatic and permits deeper insertion of the adenine ring. R-site adenine-stacking residue Phe30, which is conserved among Gram-positive bacterial Hfqs, and an altered conformation about β3 and β4 eliminate the adenosine-specificity site (A-site) and create the L-site. Binding studies show that Sa Hfq binds (AU)(3)A ≈ (AG)(3)A ≥ (AC)(3)A > (AA)(3)A and L-site residue Lys33 plays a significant role. The (R–L) motif is likely utilized by Hfqs from most Gram-positive bacteria to bind alternating (A–N)(n) RNA.
format Online
Article
Text
id pubmed-3505971
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-35059712012-11-26 Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract Horstmann, Nicola Orans, Jillian Valentin-Hansen, Poul Shelburne, Samuel A. Brennan, Richard G. Nucleic Acids Res Structural Biology Hfq is a post-transcriptional regulator that plays a key role in bacterial gene expression by binding AU-rich sequences and A-tracts to facilitate the annealing of sRNAs to target mRNAs and to affect RNA stability. To understand how Hfq from the Gram-positive bacterium Staphylococcus aureus (Sa) binds A-tract RNA, we determined the crystal structure of an Sa Hfq–adenine oligoribonucleotide complex. The structure reveals a bipartite RNA-binding motif on the distal face that is composed of a purine nucleotide-specificity site (R-site) and a non-discriminating linker site (L-site). The (R–L)-binding motif, which is also utilized by Bacillus subtilis Hfq to bind (AG)(3)A, differs from the (A–R–N) tripartite poly(A) RNA-binding motif of Escherichia coli Hfq whereby the Sa Hfq R-site strongly prefers adenosine, is more aromatic and permits deeper insertion of the adenine ring. R-site adenine-stacking residue Phe30, which is conserved among Gram-positive bacterial Hfqs, and an altered conformation about β3 and β4 eliminate the adenosine-specificity site (A-site) and create the L-site. Binding studies show that Sa Hfq binds (AU)(3)A ≈ (AG)(3)A ≥ (AC)(3)A > (AA)(3)A and L-site residue Lys33 plays a significant role. The (R–L) motif is likely utilized by Hfqs from most Gram-positive bacteria to bind alternating (A–N)(n) RNA. Oxford University Press 2012-11 2012-09-08 /pmc/articles/PMC3505971/ /pubmed/22965117 http://dx.doi.org/10.1093/nar/gks809 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Structural Biology
Horstmann, Nicola
Orans, Jillian
Valentin-Hansen, Poul
Shelburne, Samuel A.
Brennan, Richard G.
Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract
title Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract
title_full Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract
title_fullStr Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract
title_full_unstemmed Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract
title_short Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A-tract
title_sort structural mechanism of staphylococcus aureus hfq binding to an rna a-tract
topic Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505971/
https://www.ncbi.nlm.nih.gov/pubmed/22965117
http://dx.doi.org/10.1093/nar/gks809
work_keys_str_mv AT horstmannnicola structuralmechanismofstaphylococcusaureushfqbindingtoanrnaatract
AT oransjillian structuralmechanismofstaphylococcusaureushfqbindingtoanrnaatract
AT valentinhansenpoul structuralmechanismofstaphylococcusaureushfqbindingtoanrnaatract
AT shelburnesamuela structuralmechanismofstaphylococcusaureushfqbindingtoanrnaatract
AT brennanrichardg structuralmechanismofstaphylococcusaureushfqbindingtoanrnaatract