Cargando…
Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector
INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aβ on cultured hippocampal neurons are in part provo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506945/ https://www.ncbi.nlm.nih.gov/pubmed/22849569 http://dx.doi.org/10.1186/alzrt134 |
_version_ | 1782250985804005376 |
---|---|
author | Chacón, Pedro J Rodríguez-Tébar, Alfredo |
author_facet | Chacón, Pedro J Rodríguez-Tébar, Alfredo |
author_sort | Chacón, Pedro J |
collection | PubMed |
description | INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aβ on cultured hippocampal neurons are in part provoked by the antagonism of nerve growth factor (NGF) signalling, which impairs the activation of nuclear factor κB (NF-κB) by impeding the tyrosine phosphorylation of I-κBα. As a result, the expression of the homologue of Enhancer-of split 1 (Hes1) gene is downregulated and ultimately, gamma-aminobutyric acid (GABA)-ergic connectivity is lost. METHODS: Hes1 activity was promoted in cultured hippocampal neurons by overexpressing a Hes1-encoding plasmid or by upregulating this gene by activating NF-κB through different approaches (overexpressing either the I-κB kinaseβ, or p65/RelA/NF-κB). Alternatively neurons were exposed to TGFβ1. Dendrite patterning, GABAergic connectivity and cell survival were analyzed by immunofluorescence microscopy. Hes1 expression was determined by real-time PCR. NF-κB activation was measured using the dual-luciferase reporter assay. RESULTS: The expression of Hes1 abolished the effects of Aβ on dendritic patterning and GABAergic input, and it prevented the death of the cultured neurons. TGFβ1, a known neuroprotector, could counteract the deleterious effects of Aβ by inducing NF-κB activation following the serine phosphorylation of I-κBα. Indeed, the number of GABAergic terminals generated by inducing Hes1 expression was doubled. CONCLUSION: Our data define some of the mechanisms involved in Aβ-mediated cell death and they point to potential means to counteract this noxious activity. |
format | Online Article Text |
id | pubmed-3506945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35069452012-11-28 Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector Chacón, Pedro J Rodríguez-Tébar, Alfredo Alzheimers Res Ther Research INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aβ on cultured hippocampal neurons are in part provoked by the antagonism of nerve growth factor (NGF) signalling, which impairs the activation of nuclear factor κB (NF-κB) by impeding the tyrosine phosphorylation of I-κBα. As a result, the expression of the homologue of Enhancer-of split 1 (Hes1) gene is downregulated and ultimately, gamma-aminobutyric acid (GABA)-ergic connectivity is lost. METHODS: Hes1 activity was promoted in cultured hippocampal neurons by overexpressing a Hes1-encoding plasmid or by upregulating this gene by activating NF-κB through different approaches (overexpressing either the I-κB kinaseβ, or p65/RelA/NF-κB). Alternatively neurons were exposed to TGFβ1. Dendrite patterning, GABAergic connectivity and cell survival were analyzed by immunofluorescence microscopy. Hes1 expression was determined by real-time PCR. NF-κB activation was measured using the dual-luciferase reporter assay. RESULTS: The expression of Hes1 abolished the effects of Aβ on dendritic patterning and GABAergic input, and it prevented the death of the cultured neurons. TGFβ1, a known neuroprotector, could counteract the deleterious effects of Aβ by inducing NF-κB activation following the serine phosphorylation of I-κBα. Indeed, the number of GABAergic terminals generated by inducing Hes1 expression was doubled. CONCLUSION: Our data define some of the mechanisms involved in Aβ-mediated cell death and they point to potential means to counteract this noxious activity. BioMed Central 2012-07-31 /pmc/articles/PMC3506945/ /pubmed/22849569 http://dx.doi.org/10.1186/alzrt134 Text en Copyright ©2012 Chacón and Rodríguez-Tébar; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Chacón, Pedro J Rodríguez-Tébar, Alfredo Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector |
title | Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector |
title_full | Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector |
title_fullStr | Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector |
title_full_unstemmed | Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector |
title_short | Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector |
title_sort | increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506945/ https://www.ncbi.nlm.nih.gov/pubmed/22849569 http://dx.doi.org/10.1186/alzrt134 |
work_keys_str_mv | AT chaconpedroj increasedexpressionofthehomologueofenhancerofsplit1protectsneuronsfrombetaamyloidneurotoxicityandhintsatanalternativerolefortransforminggrowthfactorbeta1asaneuroprotector AT rodrigueztebaralfredo increasedexpressionofthehomologueofenhancerofsplit1protectsneuronsfrombetaamyloidneurotoxicityandhintsatanalternativerolefortransforminggrowthfactorbeta1asaneuroprotector |