Cargando…
One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs
In brachiation, two main gaits are distinguished, ricochetal brachiation and continuous contact brachiation. During ricochetal brachiation, a flight phase exists and the body centre of mass (bCOM) describes a parabolic trajectory. For continuous contact brachiation, where at least one hand is always...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507214/ https://www.ncbi.nlm.nih.gov/pubmed/23213432 http://dx.doi.org/10.1242/bio.2012588 |
_version_ | 1782251040944422912 |
---|---|
author | Michilsens, Fana D'Août, Kristiaan Vereecke, Evie E. Aerts, Peter |
author_facet | Michilsens, Fana D'Août, Kristiaan Vereecke, Evie E. Aerts, Peter |
author_sort | Michilsens, Fana |
collection | PubMed |
description | In brachiation, two main gaits are distinguished, ricochetal brachiation and continuous contact brachiation. During ricochetal brachiation, a flight phase exists and the body centre of mass (bCOM) describes a parabolic trajectory. For continuous contact brachiation, where at least one hand is always in contact with the substrate, we showed in an earlier paper that four step-to-step transition types occur. We referred to these as a ‘point’, a ‘loop’, a ‘backward pendulum’ and a ‘parabolic’ transition. Only the first two transition types have previously been mentioned in the existing literature on gibbon brachiation. In the current study, we used three-dimensional video and force analysis to describe and characterize these four step-to-step transition types. Results show that, although individual preference occurs, the brachiation strides characterized by each transition type are mainly associated with speed. Yet, these four transitions seem to form a continuum rather than four distinct types. Energy recovery and collision fraction are used as estimators of mechanical efficiency of brachiation and, remarkably, these parameters do not differ between strides with different transition types. All strides show high energy recoveries (mean = 70±11.4%) and low collision fractions (mean = 0.2±0.13), regardless of the step-to-step transition type used. We conclude that siamangs have efficient means of modifying locomotor speed during continuous contact brachiation by choosing particular step-to-step transition types, which all minimize collision fraction and enhance energy recovery. |
format | Online Article Text |
id | pubmed-3507214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The Company of Biologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-35072142012-12-04 One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs Michilsens, Fana D'Août, Kristiaan Vereecke, Evie E. Aerts, Peter Biol Open Research Article In brachiation, two main gaits are distinguished, ricochetal brachiation and continuous contact brachiation. During ricochetal brachiation, a flight phase exists and the body centre of mass (bCOM) describes a parabolic trajectory. For continuous contact brachiation, where at least one hand is always in contact with the substrate, we showed in an earlier paper that four step-to-step transition types occur. We referred to these as a ‘point’, a ‘loop’, a ‘backward pendulum’ and a ‘parabolic’ transition. Only the first two transition types have previously been mentioned in the existing literature on gibbon brachiation. In the current study, we used three-dimensional video and force analysis to describe and characterize these four step-to-step transition types. Results show that, although individual preference occurs, the brachiation strides characterized by each transition type are mainly associated with speed. Yet, these four transitions seem to form a continuum rather than four distinct types. Energy recovery and collision fraction are used as estimators of mechanical efficiency of brachiation and, remarkably, these parameters do not differ between strides with different transition types. All strides show high energy recoveries (mean = 70±11.4%) and low collision fractions (mean = 0.2±0.13), regardless of the step-to-step transition type used. We conclude that siamangs have efficient means of modifying locomotor speed during continuous contact brachiation by choosing particular step-to-step transition types, which all minimize collision fraction and enhance energy recovery. The Company of Biologists 2012-02-17 /pmc/articles/PMC3507214/ /pubmed/23213432 http://dx.doi.org/10.1242/bio.2012588 Text en © 2012. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by-nc-sa/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Article Michilsens, Fana D'Août, Kristiaan Vereecke, Evie E. Aerts, Peter One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs |
title | One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs |
title_full | One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs |
title_fullStr | One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs |
title_full_unstemmed | One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs |
title_short | One step beyond: Different step-to-step transitions exist during continuous contact brachiation in siamangs |
title_sort | one step beyond: different step-to-step transitions exist during continuous contact brachiation in siamangs |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507214/ https://www.ncbi.nlm.nih.gov/pubmed/23213432 http://dx.doi.org/10.1242/bio.2012588 |
work_keys_str_mv | AT michilsensfana onestepbeyonddifferentsteptosteptransitionsexistduringcontinuouscontactbrachiationinsiamangs AT daoutkristiaan onestepbeyonddifferentsteptosteptransitionsexistduringcontinuouscontactbrachiationinsiamangs AT vereeckeeviee onestepbeyonddifferentsteptosteptransitionsexistduringcontinuouscontactbrachiationinsiamangs AT aertspeter onestepbeyonddifferentsteptosteptransitionsexistduringcontinuouscontactbrachiationinsiamangs |