Cargando…

Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes

Omnivores can impact ecosystems via opposing direct or indirect effects. For example, omnivores that feed on herbivores and plants could either increase plant biomass due to the removal of herbivores or decrease plant biomass due to direct consumption. Thus, empirical quantification of the relative...

Descripción completa

Detalles Bibliográficos
Autores principales: Moore, Jonathan W., Carlson, Stephanie M., Twardochleb, Laura A., Hwan, Jason L., Fox, Justin M., Hayes, Sean A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507779/
https://www.ncbi.nlm.nih.gov/pubmed/23209810
http://dx.doi.org/10.1371/journal.pone.0050687
_version_ 1782251131267710976
author Moore, Jonathan W.
Carlson, Stephanie M.
Twardochleb, Laura A.
Hwan, Jason L.
Fox, Justin M.
Hayes, Sean A.
author_facet Moore, Jonathan W.
Carlson, Stephanie M.
Twardochleb, Laura A.
Hwan, Jason L.
Fox, Justin M.
Hayes, Sean A.
author_sort Moore, Jonathan W.
collection PubMed
description Omnivores can impact ecosystems via opposing direct or indirect effects. For example, omnivores that feed on herbivores and plants could either increase plant biomass due to the removal of herbivores or decrease plant biomass due to direct consumption. Thus, empirical quantification of the relative importance of direct and indirect impacts of omnivores is needed, especially the impacts of invasive omnivores. Here we investigated how an invasive omnivore (signal crayfish, Pacifastacus leniusculus) impacts stream ecosystems. First, we performed a large-scale experiment to examine the short-term (three month) direct and indirect impacts of crayfish on a stream food web. Second, we performed a comparative study of un-invaded areas and areas invaded 90 years ago to examine whether patterns from the experiment scaled up to longer time frames. In the experiment, crayfish increased leaf litter breakdown rate, decreased the abundance and biomass of other benthic invertebrates, and increased algal production. Thus, crayfish controlled detritus via direct consumption and likely drove a trophic cascade through predation on grazers. Consistent with the experiment, the comparative study also found that benthic invertebrate biomass decreased with crayfish. However, contrary to the experiment, crayfish presence was not significantly associated with higher leaf litter breakdown in the comparative study. We posit that during invasion, generalist crayfish replace the more specialized native detritivores (caddisflies), thereby leading to little long-term change in net detrital breakdown. A feeding experiment revealed that these native detritivores and the crayfish were both effective consumers of detritus. Thus, the impacts of omnivores represent a temporally-shifting interplay between direct and indirect effects that can control basal resources.
format Online
Article
Text
id pubmed-3507779
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35077792012-12-03 Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes Moore, Jonathan W. Carlson, Stephanie M. Twardochleb, Laura A. Hwan, Jason L. Fox, Justin M. Hayes, Sean A. PLoS One Research Article Omnivores can impact ecosystems via opposing direct or indirect effects. For example, omnivores that feed on herbivores and plants could either increase plant biomass due to the removal of herbivores or decrease plant biomass due to direct consumption. Thus, empirical quantification of the relative importance of direct and indirect impacts of omnivores is needed, especially the impacts of invasive omnivores. Here we investigated how an invasive omnivore (signal crayfish, Pacifastacus leniusculus) impacts stream ecosystems. First, we performed a large-scale experiment to examine the short-term (three month) direct and indirect impacts of crayfish on a stream food web. Second, we performed a comparative study of un-invaded areas and areas invaded 90 years ago to examine whether patterns from the experiment scaled up to longer time frames. In the experiment, crayfish increased leaf litter breakdown rate, decreased the abundance and biomass of other benthic invertebrates, and increased algal production. Thus, crayfish controlled detritus via direct consumption and likely drove a trophic cascade through predation on grazers. Consistent with the experiment, the comparative study also found that benthic invertebrate biomass decreased with crayfish. However, contrary to the experiment, crayfish presence was not significantly associated with higher leaf litter breakdown in the comparative study. We posit that during invasion, generalist crayfish replace the more specialized native detritivores (caddisflies), thereby leading to little long-term change in net detrital breakdown. A feeding experiment revealed that these native detritivores and the crayfish were both effective consumers of detritus. Thus, the impacts of omnivores represent a temporally-shifting interplay between direct and indirect effects that can control basal resources. Public Library of Science 2012-11-27 /pmc/articles/PMC3507779/ /pubmed/23209810 http://dx.doi.org/10.1371/journal.pone.0050687 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Moore, Jonathan W.
Carlson, Stephanie M.
Twardochleb, Laura A.
Hwan, Jason L.
Fox, Justin M.
Hayes, Sean A.
Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes
title Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes
title_full Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes
title_fullStr Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes
title_full_unstemmed Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes
title_short Trophic Tangles through Time? Opposing Direct and Indirect Effects of an Invasive Omnivore on Stream Ecosystem Processes
title_sort trophic tangles through time? opposing direct and indirect effects of an invasive omnivore on stream ecosystem processes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507779/
https://www.ncbi.nlm.nih.gov/pubmed/23209810
http://dx.doi.org/10.1371/journal.pone.0050687
work_keys_str_mv AT moorejonathanw trophictanglesthroughtimeopposingdirectandindirecteffectsofaninvasiveomnivoreonstreamecosystemprocesses
AT carlsonstephaniem trophictanglesthroughtimeopposingdirectandindirecteffectsofaninvasiveomnivoreonstreamecosystemprocesses
AT twardochleblauraa trophictanglesthroughtimeopposingdirectandindirecteffectsofaninvasiveomnivoreonstreamecosystemprocesses
AT hwanjasonl trophictanglesthroughtimeopposingdirectandindirecteffectsofaninvasiveomnivoreonstreamecosystemprocesses
AT foxjustinm trophictanglesthroughtimeopposingdirectandindirecteffectsofaninvasiveomnivoreonstreamecosystemprocesses
AT hayesseana trophictanglesthroughtimeopposingdirectandindirecteffectsofaninvasiveomnivoreonstreamecosystemprocesses