Cargando…
Drosophila Rbp6 Is an Orthologue of Vertebrate Msi-1 and Msi-2, but Does Not Function Redundantly with dMsi to Regulate Germline Stem Cell Behaviour
The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi pr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507872/ https://www.ncbi.nlm.nih.gov/pubmed/23209605 http://dx.doi.org/10.1371/journal.pone.0049810 |
Sumario: | The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell behaviour. Here we have identified a second Drosophila Msi family member, Rbp6, which shares more amino acid identity with vertebrate Msi-1 and Msi-2 than dMsi. We generated an antibody that detects most Rbp6 splice isoforms and show that Rbp6 is expressed in multiple tissues throughout development. However, Rbp6 deletion mutants generated in this study are viable and fertile, and show only minor defects. We used Drosophila spermatogonial germline stem cells (GSC’s) as a model to test whether Drosophila Msi proteins function redundantly to regulate stem cell behaviour. However, like vertebrate Msi-1 and Msi-2, Rbp6 and Msi do not appear to be co-expressed in spermatogenic GSC’s and do not function co-operatively in the regulation of GSC maintenance. Thus while two Msi family members are present in Drosophila, the function of the family members have diverged. |
---|