Cargando…

Structural Mechanism of ER Retrieval of MHC Class I by Cowpox

One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we s...

Descripción completa

Detalles Bibliográficos
Autores principales: McCoy, William H., Wang, Xiaoli, Yokoyama, Wayne M., Hansen, Ted H., Fremont, Daved H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507924/
https://www.ncbi.nlm.nih.gov/pubmed/23209377
http://dx.doi.org/10.1371/journal.pbio.1001432
_version_ 1782251164744548352
author McCoy, William H.
Wang, Xiaoli
Yokoyama, Wayne M.
Hansen, Ted H.
Fremont, Daved H.
author_facet McCoy, William H.
Wang, Xiaoli
Yokoyama, Wayne M.
Hansen, Ted H.
Fremont, Daved H.
author_sort McCoy, William H.
collection PubMed
description One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation.
format Online
Article
Text
id pubmed-3507924
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35079242012-12-03 Structural Mechanism of ER Retrieval of MHC Class I by Cowpox McCoy, William H. Wang, Xiaoli Yokoyama, Wayne M. Hansen, Ted H. Fremont, Daved H. PLoS Biol Research Article One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation. Public Library of Science 2012-11-27 /pmc/articles/PMC3507924/ /pubmed/23209377 http://dx.doi.org/10.1371/journal.pbio.1001432 Text en © 2012 McCoy IV et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
McCoy, William H.
Wang, Xiaoli
Yokoyama, Wayne M.
Hansen, Ted H.
Fremont, Daved H.
Structural Mechanism of ER Retrieval of MHC Class I by Cowpox
title Structural Mechanism of ER Retrieval of MHC Class I by Cowpox
title_full Structural Mechanism of ER Retrieval of MHC Class I by Cowpox
title_fullStr Structural Mechanism of ER Retrieval of MHC Class I by Cowpox
title_full_unstemmed Structural Mechanism of ER Retrieval of MHC Class I by Cowpox
title_short Structural Mechanism of ER Retrieval of MHC Class I by Cowpox
title_sort structural mechanism of er retrieval of mhc class i by cowpox
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507924/
https://www.ncbi.nlm.nih.gov/pubmed/23209377
http://dx.doi.org/10.1371/journal.pbio.1001432
work_keys_str_mv AT mccoywilliamh structuralmechanismoferretrievalofmhcclassibycowpox
AT wangxiaoli structuralmechanismoferretrievalofmhcclassibycowpox
AT yokoyamawaynem structuralmechanismoferretrievalofmhcclassibycowpox
AT hansentedh structuralmechanismoferretrievalofmhcclassibycowpox
AT fremontdavedh structuralmechanismoferretrievalofmhcclassibycowpox