Cargando…

Non-Synonymous Polymorphisms in the FCN1 Gene Determine Ligand-Binding Ability and Serum Levels of M-Ficolin

BACKGROUND: The innate immune system encompasses various recognition molecules able to sense both exogenous and endogenous danger signals arising from pathogens or damaged host cells. One such pattern-recognition molecule is M-ficolin, which is capable of activating the complement system through the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ammitzbøll, Christian Gytz, Kjær, Troels Rønn, Steffensen, Rudi, Stengaard-Pedersen, Kristian, Nielsen, Hans Jørgen, Thiel, Steffen, Bøgsted, Martin, Jensenius, Jens Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509001/
https://www.ncbi.nlm.nih.gov/pubmed/23209787
http://dx.doi.org/10.1371/journal.pone.0050585
Descripción
Sumario:BACKGROUND: The innate immune system encompasses various recognition molecules able to sense both exogenous and endogenous danger signals arising from pathogens or damaged host cells. One such pattern-recognition molecule is M-ficolin, which is capable of activating the complement system through the lectin pathway. The lectin pathway is multifaceted with activities spanning from complement activation to coagulation, autoimmunity, ischemia-reperfusion injury and embryogenesis. Our aim was to explore associations between SNPs in FCN1, encoding M-ficolin and corresponding protein concentrations, and the impact of non-synonymous SNPs on protein function. PRINCIPAL FINDINGS: We genotyped 26 polymorphisms in the FCN1 gene and found 8 of these to be associated with M-ficolin levels in a cohort of 346 blood donors. Four of those polymorphisms were located in the promoter region and exon 1 and were in high linkage disequilibrium (r(2)≥0.91). The most significant of those were the AA genotype of −144C>A (rs10117466), which was associated with an increase in M-ficolin concentration of 26% compared to the CC genotype. We created recombinant proteins corresponding to the five non-synonymous mutations encountered and found that the Ser268Pro (rs150625869) mutation lead to loss of M-ficolin production. This was backed up by clinical observations, indicating that an individual homozygote of Ser268Pro would be completely M-ficolin deficient. Furthermore, the Ala218Thr (rs148649884) and Asn289Ser (rs138055828) were both associated with low M-ficolin levels, and the mutations crippled the ligand-binding capability of the recombinant M-ficolin, as indicated by the low binding to Group B Streptococcus. SIGNIFICANCE: Overall, our study interlinks the genotype and phenotype relationship concerning polymorphisms in FCN1 and corresponding concentrations and biological functions of M-ficolin. The elucidations of these associations provide information for future genetic studies in the lectin pathway and complement system.