Cargando…

Biological Effects of Add-On Eicosapentaenoic Acid Supplementation in Diabetes Mellitus and Co-Morbid Depression: A Randomized Controlled Trial

BACKGROUND: Eicosapentaenoic acid (EPA) may reduce increased risks for (cardiovascular) morbidity and mortality in patients with diabetes mellitus (DM) and comorbid major depressive depression (MDD). Yet, effects of EPA-supplementation on biological risk factors for adverse outcomes have not been st...

Descripción completa

Detalles Bibliográficos
Autores principales: Mocking, Roel J. T., Assies, Johanna, Bot, Mariska, Jansen, Eugene H. J. M., Schene, Aart H., Pouwer, François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509102/
https://www.ncbi.nlm.nih.gov/pubmed/23209576
http://dx.doi.org/10.1371/journal.pone.0049431
Descripción
Sumario:BACKGROUND: Eicosapentaenoic acid (EPA) may reduce increased risks for (cardiovascular) morbidity and mortality in patients with diabetes mellitus (DM) and comorbid major depressive depression (MDD). Yet, effects of EPA-supplementation on biological risk factors for adverse outcomes have not been studied in DM-patients with MDD. METHODS: We performed a randomized, double-blind trial (n = 25) comparing add-on ethyl-EPA-supplementation to placebo on (I) oxidative stress, (II) inflammatory, (III) hypothalamic-pituitary-adrenal (HPA)-axis, (IV) one-carbon-cycle, (V) fatty acid metabolism and (VI) lipoprotein parameters during 12-weeks' follow-up. RESULTS: Besides increases in supplemented α-tocopherol [estimate (95% CI); 3.62 (1.14–6.11) µmol/l; p = 0.006] and plasma and erythrocyte EPA, the intervention did not influence other oxidative stress, inflammatory or one-carbon-cycle parameters compared to placebo. HPA-axis reactivity significantly decreased in the EPA-group (N = 12) [AUC(i): −121.93 (−240.20–−3.47) min×nmol/l; p = 0.045], not in the placebo-group (N = 12). Furthermore, EPA-supplementation increased erythrocyte and plasma docosapentaenoic acid, and decreased plasma arachidonic acid (AA) concentrations [−1.61 (−3.10–−0.11) %; p = 0.036]. Finally, EPA had a multivariate influence on lipoprotein concentrations (p = 0.030), reflected by relative increases in high density lipoprotein [HDL; 0.30 (0.02–0.58) mmol/l; p = 0.039] and total cholesterol concentrations [1.01 (0.29–1.72) mmol/l; p = 0.008]. CONCLUSION: Overall, add-on EPA-supplementation had limited effects on biological risk factors for adverse outcome in this sample of DM-patients with comorbid MDD. Besides increases in concentrations of supplemented α-tocopherol and EPA, AA decreased, and inconclusive effects on HPA-axis (re)activity and lipoprotein concentrations were observed. Therefore, further studies on the alleged beneficial effects of EPA-supplementation on biological risk factors for adverse outcome in DM-patients with comorbid MDD seem warranted, preferably using clinical outcomes such as (cardiovascular) DM-complications. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN30877831 ISRCTN30877831