Cargando…
Rapid Detection and Differentiation of Swine-Origin Influenza A Virus (H1N1/2009) from Other Seasonal Influenza A Viruses
We previously developed a rapid and simple gold nanoparticle(NP)-based genomic microarray assay for identification of the avian H5N1 virus and its discrimination from other influenza A virus strains (H1N1, H3N2). In this study, we expanded the platform to detect the 2009 swine-origin influenza A vir...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509681/ https://www.ncbi.nlm.nih.gov/pubmed/23202513 http://dx.doi.org/10.3390/v4113012 |
Sumario: | We previously developed a rapid and simple gold nanoparticle(NP)-based genomic microarray assay for identification of the avian H5N1 virus and its discrimination from other influenza A virus strains (H1N1, H3N2). In this study, we expanded the platform to detect the 2009 swine-origin influenza A virus (H1N1/2009). Multiple specific capture and intermediate oligonucleotides were designed for the matrix (M), hemagglutinin (HA), and neuraminidase (NA) genes of the H1N1/2009 virus. The H1N1/2009 microarrays were printed in the same format as those of the seasonal influenza H1N1 and H3N2 for the HA, NA, and M genes. Viral RNA was tested using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining. The signal from the 4 capture-target-intermediates of the HA and NA genes was specific for H1N1/2009 virus and showed no cross hybridization with viral RNA from other influenza strains H1N1, H3N2, and H5N1. All of the 3 M gene captures showed strong affinity with H1N1/2009 viral RNA, with 2 out of the 3 M gene captures showing cross hybridization with the H1N1, H3N2, and H5N1 samples tested. The current assay was able to detect H1N1/2009 and distinguish it from other influenza A viruses. This new method may be useful for simultaneous detection and subtyping of influenza A viruses and can be rapidly modified to detect other emerging influenza strains in public health settings. |
---|