Cargando…
Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system
The endoplasmic reticulum (ER)–resident enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyzes the rate-limiting step in sterol production and is the therapeutic target of statins. Understanding HMG-CoA reductase regulation has tremendous implications for atherosclerosis. HMG-CoA reduct...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510011/ https://www.ncbi.nlm.nih.gov/pubmed/23087214 http://dx.doi.org/10.1091/mbc.E12-08-0631 |
Sumario: | The endoplasmic reticulum (ER)–resident enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyzes the rate-limiting step in sterol production and is the therapeutic target of statins. Understanding HMG-CoA reductase regulation has tremendous implications for atherosclerosis. HMG-CoA reductase levels are regulated in response to sterols both transcriptionally, through a complex regulatory loop involving the ER Insig proteins, and posttranslationally, by Insig-dependent protein degradation by the ubiquitin-proteasome system. The ubiquitin ligase (E3) gp78 has been implicated in the sterol-regulated degradation of HMG-CoA reductase and Insig-1 through ER-associated degradation (ERAD). More recently, a second ERAD E3, TRC8, has also been reported to play a role in the sterol-accelerated degradation of HMG-CoA reductase. We interrogated this network in gp78(−/−) mouse embryonic fibroblasts and also assessed two fibroblast cell lines using RNA interference. Although we consistently observe involvement of gp78 in Insig-1 degradation, we find no substantive evidence to support roles for either gp78 or TRC8 in the robust sterol-accelerated degradation of HMG-CoA reductase. We discuss factors that might lead to such discrepant findings. Our results suggest a need for additional studies before definitive mechanistic conclusions are drawn that might set the stage for development of drugs to manipulate gp78 function in metabolic disorders. |
---|