Cargando…
Opposite Role of Kindlin-1 and Kindlin-2 in Lung Cancers
Lung cancer is highly heterogenous and is composed of various subtypes that are in diverse differential stages. The newly identified integrin-interacting proteins Kindlin-1 and Kindlin-2 are the activators of transmembrane receptor integrins that play important roles in cancer progression. In this r...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510225/ https://www.ncbi.nlm.nih.gov/pubmed/23209705 http://dx.doi.org/10.1371/journal.pone.0050313 |
Sumario: | Lung cancer is highly heterogenous and is composed of various subtypes that are in diverse differential stages. The newly identified integrin-interacting proteins Kindlin-1 and Kindlin-2 are the activators of transmembrane receptor integrins that play important roles in cancer progression. In this report we present the expression profiles of Kindlin-1 and Kindlin-2 in lung cancers using patient specimens and established their correlation with lung cancer progression. We found that Kindlin-1 was expressed in epithelia-derived non-small-cell lung cancer, especially in squamous cell lung cancer but expressed at low levels in poorly differentiated large cell lung cancer. However, Kindlin-2 was highly expressed in large cell lung cancer. Both Kindlin-1 and Kindlin-2 were found not expressed or expressed at very low levels in neuroendocrine-derived small cell lung cancer. Importantly, the Kindlin-1 expression level was positively correlated with the differentiation of squamous cell lung cancer. Surprisingly, we found that the very homologous Kindlin family proteins, Kindlin-1 and Kindlin-2, displayed counteracting functional roles in lung cancer cells. Ectopic expression of Kindlin-1 in non-small-cell lung cancer cells inhibited in vitro cell migration and in vivo tumor growth, while Kindlin-2 promoted these functions. Mechanistically, Kindlin-1 prohibited epithelail to mesenchymal transition in non-small-cell lung cancer cells, while Kindlin-2 enhanced epithelail to mesenchymal transition in these cells. Taken together, we demonstrated that Kindlin-1 and Kindlin-2 differentially regulate lung cancer cell progression. Further, the expression levels of Kindlin-1 might be potentially used as a marker for lung cancer differentiation and targeting Kindlin-2 might block the invasive growth of large cell lung cancer. |
---|