Cargando…

Influence of Trace Elements on Stabilization of Aqueous Solutions of Ascorbic Acid

Together with vitamin C, zinc, selenium, manganese, and magnesium play a vital role in the preservation of organs scheduled for transplantation. In the present study, it is shown that addition of 1 mg/l of these elements influences the stability of 0.3 mM ascorbic acid solutions. The solution’s stab...

Descripción completa

Detalles Bibliográficos
Autores principales: Dolińska, Barbara, Ostróżka-Cieślik, Aneta, Caban, Artur, Rimantas, Klimas, Leszczyńska, Lucyna, Ryszka, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Humana Press Inc 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510389/
https://www.ncbi.nlm.nih.gov/pubmed/23099563
http://dx.doi.org/10.1007/s12011-012-9524-4
Descripción
Sumario:Together with vitamin C, zinc, selenium, manganese, and magnesium play a vital role in the preservation of organs scheduled for transplantation. In the present study, it is shown that addition of 1 mg/l of these elements influences the stability of 0.3 mM ascorbic acid solutions. The solution’s stability was estimated using an accelerated stability test. The concentration of vitamin C was measured using a validated spectrophotometric method, which uses the reduction of 2,6-dichlorophenoloindophenol by ascorbic acid. Elevated temperatures, the factor accelerating substances’ decomposition reaction rate, were used in the tests. The research was conducted at two temperatures at intervals of 10 °C: 80 ± 0.1 and 90 ± 0.1 °C. It was stated that the studied substances’ decomposition occurred in accordance with the equation for first-order reactions. The function of the logarithmic concentration (log%C) over time was revealed to be rectilinear. This dependence was used to determine the kinetics of decomposition reaction rate parameters. The stabilization of vitamin C solutions was measured as the time in which 10 % of the substance decomposed at 20 and 0 °C. Addition of Se(IV) or Mg(II) ions significantly increase the stability of ascorbic acid solution (∼34 and ∼16 %, respectively), but Zn(II) causes a significant decrease in stability by ∼23 %. Addition of Mn(II) has no significant influence on vitamin C stability.