Cargando…
Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes
Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG(3)T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G(2)T3′), d(3′T5′-5′G(3)T3′) and d(5′TG3′-3′G(2)T5’) demonstrates formation of G-quadruplex structures with tetrameric t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510487/ https://www.ncbi.nlm.nih.gov/pubmed/22977177 http://dx.doi.org/10.1093/nar/gks851 |
_version_ | 1782251476861583360 |
---|---|
author | Šket, Primož Virgilio, Antonella Esposito, Veronica Galeone, Aldo Plavec, Janez |
author_facet | Šket, Primož Virgilio, Antonella Esposito, Veronica Galeone, Aldo Plavec, Janez |
author_sort | Šket, Primož |
collection | PubMed |
description | Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG(3)T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G(2)T3′), d(3′T5′-5′G(3)T3′) and d(5′TG3′-3′G(2)T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 5′-3′ backbone. Exchange of (15)[Image: see text] ions between G-quadruplex and bulk solution is faster at the 3′-end in comparison to the 5′-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG(3)T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures. |
format | Online Article Text |
id | pubmed-3510487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35104872012-11-30 Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes Šket, Primož Virgilio, Antonella Esposito, Veronica Galeone, Aldo Plavec, Janez Nucleic Acids Res Structural Biology Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG(3)T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G(2)T3′), d(3′T5′-5′G(3)T3′) and d(5′TG3′-3′G(2)T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 5′-3′ backbone. Exchange of (15)[Image: see text] ions between G-quadruplex and bulk solution is faster at the 3′-end in comparison to the 5′-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG(3)T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures. Oxford University Press 2012-11 2012-09-12 /pmc/articles/PMC3510487/ /pubmed/22977177 http://dx.doi.org/10.1093/nar/gks851 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Structural Biology Šket, Primož Virgilio, Antonella Esposito, Veronica Galeone, Aldo Plavec, Janez Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes |
title | Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes |
title_full | Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes |
title_fullStr | Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes |
title_full_unstemmed | Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes |
title_short | Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes |
title_sort | strand directionality affects cation binding and movement within tetramolecular g-quadruplexes |
topic | Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510487/ https://www.ncbi.nlm.nih.gov/pubmed/22977177 http://dx.doi.org/10.1093/nar/gks851 |
work_keys_str_mv | AT sketprimoz stranddirectionalityaffectscationbindingandmovementwithintetramoleculargquadruplexes AT virgilioantonella stranddirectionalityaffectscationbindingandmovementwithintetramoleculargquadruplexes AT espositoveronica stranddirectionalityaffectscationbindingandmovementwithintetramoleculargquadruplexes AT galeonealdo stranddirectionalityaffectscationbindingandmovementwithintetramoleculargquadruplexes AT plavecjanez stranddirectionalityaffectscationbindingandmovementwithintetramoleculargquadruplexes |