Cargando…

Metal–ligand multiple bonds as frustrated Lewis pairs for C–H functionalization

The concept of frustrated Lewis pairs (FLPs) has received considerable attention of late, and numerous reports have demonstrated the power of non- or weakly interacting Lewis acid–base pairs for the cooperative activation of small molecules. Although most studies have focused on the use of organic o...

Descripción completa

Detalles Bibliográficos
Autor principal: Whited, Matthew T
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510986/
https://www.ncbi.nlm.nih.gov/pubmed/23209486
http://dx.doi.org/10.3762/bjoc.8.177
Descripción
Sumario:The concept of frustrated Lewis pairs (FLPs) has received considerable attention of late, and numerous reports have demonstrated the power of non- or weakly interacting Lewis acid–base pairs for the cooperative activation of small molecules. Although most studies have focused on the use of organic or main-group FLPs that utilize steric encumbrance to prevent adduct formation, a related strategy can be envisioned for both organic and inorganic complexes, in which "electronic frustration" engenders reactivity consistent with both nucleophilic (basic) and electrophilic (acidic) character. Here we propose that such a description is consistent with the behavior of many coordinatively unsaturated transition-metal species featuring metal–ligand multiple bonds, and we further demonstrate that the resultant reactivity may be a powerful tool for the functionalization of C–H and E–H bonds.