Cargando…
Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery
Intracellular processes, including endosomal escape and intracellular release, are efficiency-determining steps in achieving successful gene delivery. It has been found that the presence of acid-labile units in polymers can facilitate endosomal escape and that the presence of reducible units in poly...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511192/ https://www.ncbi.nlm.nih.gov/pubmed/23209367 http://dx.doi.org/10.2147/IJN.S37334 |
_version_ | 1782251552247906304 |
---|---|
author | Yu, Zhi-Qiang Yan, Jun-Jie You, Ye-Zi Zhou, Qing-Hui |
author_facet | Yu, Zhi-Qiang Yan, Jun-Jie You, Ye-Zi Zhou, Qing-Hui |
author_sort | Yu, Zhi-Qiang |
collection | PubMed |
description | Intracellular processes, including endosomal escape and intracellular release, are efficiency-determining steps in achieving successful gene delivery. It has been found that the presence of acid-labile units in polymers can facilitate endosomal escape and that the presence of reducible units in polymers can lead to intracellular release. In this study, poly(amido amine)s with both bioreducible and acid-labile properties were synthesized to improve gene delivery compared with single-responsive carriers. Transfection and cytotoxicity were evaluated in three cell lines. The complexes of DNA with dual-responsive polymers showed higher gene transfection efficiency than single-responsive polymers and polyethylenimine. At the same time, these polymers were tens of times less cytotoxic than polyethylenimine. Therefore, a polymer that is both reducible and acid-labile is a promising material for efficient and biocompatible gene delivery. |
format | Online Article Text |
id | pubmed-3511192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35111922012-12-03 Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery Yu, Zhi-Qiang Yan, Jun-Jie You, Ye-Zi Zhou, Qing-Hui Int J Nanomedicine Original Research Intracellular processes, including endosomal escape and intracellular release, are efficiency-determining steps in achieving successful gene delivery. It has been found that the presence of acid-labile units in polymers can facilitate endosomal escape and that the presence of reducible units in polymers can lead to intracellular release. In this study, poly(amido amine)s with both bioreducible and acid-labile properties were synthesized to improve gene delivery compared with single-responsive carriers. Transfection and cytotoxicity were evaluated in three cell lines. The complexes of DNA with dual-responsive polymers showed higher gene transfection efficiency than single-responsive polymers and polyethylenimine. At the same time, these polymers were tens of times less cytotoxic than polyethylenimine. Therefore, a polymer that is both reducible and acid-labile is a promising material for efficient and biocompatible gene delivery. Dove Medical Press 2012 2012-11-23 /pmc/articles/PMC3511192/ /pubmed/23209367 http://dx.doi.org/10.2147/IJN.S37334 Text en © 2012 Yu et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Yu, Zhi-Qiang Yan, Jun-Jie You, Ye-Zi Zhou, Qing-Hui Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery |
title | Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery |
title_full | Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery |
title_fullStr | Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery |
title_full_unstemmed | Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery |
title_short | Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery |
title_sort | bioreducible and acid-labile poly(amido amine)s for efficient gene delivery |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511192/ https://www.ncbi.nlm.nih.gov/pubmed/23209367 http://dx.doi.org/10.2147/IJN.S37334 |
work_keys_str_mv | AT yuzhiqiang bioreducibleandacidlabilepolyamidoaminesforefficientgenedelivery AT yanjunjie bioreducibleandacidlabilepolyamidoaminesforefficientgenedelivery AT youyezi bioreducibleandacidlabilepolyamidoaminesforefficientgenedelivery AT zhouqinghui bioreducibleandacidlabilepolyamidoaminesforefficientgenedelivery |