Cargando…

Expression-Based Functional Investigation of the Organ-Specific MicroRNAs in Arabidopsis

MicroRNAs (miRNAs) play a pivotal role in plant development. The expression patterns of the miRNA genes significantly influence their regulatory activities. By utilizing small RNA (sRNA) high-throughput sequencing (HTS) data, the miRNA expression patterns were investigated in four organs (flowers, l...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Yijun, Shao, Chaogang, Ma, Xiaoxia, Wang, Huizhong, Chen, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511311/
https://www.ncbi.nlm.nih.gov/pubmed/23226412
http://dx.doi.org/10.1371/journal.pone.0050870
Descripción
Sumario:MicroRNAs (miRNAs) play a pivotal role in plant development. The expression patterns of the miRNA genes significantly influence their regulatory activities. By utilizing small RNA (sRNA) high-throughput sequencing (HTS) data, the miRNA expression patterns were investigated in four organs (flowers, leaves, roots and seedlings) of Arabidopsis. Based on a set of criteria, dozens of organ-specific miRNAs were discovered. A dominant portion of the organ-specific miRNAs identified from the ARGONAUTE 4-enriched sRNA HTS libraries were highly expressed in flowers. Additionally, the expression of the precursors of the organ-specific miRNAs was analyzed. Degradome sequencing data-based approach was employed to identify the targets of the organ-specific miRNAs. The miRNA–target interactions were used for network construction. Subnetwork analysis unraveled some novel regulatory cascades, such as the feedback regulation mediated by miR161, the potential self-regulation of the genes miR172, miR396, miR398 and miR860, and the miR863-guided cleavage of the SERRATE transcript. Our bioinformatics survey expanded the organ-specific miRNA–target list in Arabidopsis, and could deepen the biological view of the miRNA expression and their regulatory roles.