Cargando…
Phenotypic and Evolutionary Consequences of Social Behaviours: Interactions among Individuals Affect Direct Genetic Effects
Traditional quantitative genetics assumes that an individual's phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511512/ https://www.ncbi.nlm.nih.gov/pubmed/23226195 http://dx.doi.org/10.1371/journal.pone.0046273 |
Sumario: | Traditional quantitative genetics assumes that an individual's phenotype is determined by both genetic and environmental factors. For many animals, part of the environment is social and provided by parents and other interacting partners. When expression of genes in social partners affects trait expression in a focal individual, indirect genetic effects occur. In this study, we explore the effects of indirect genetic effects on the magnitude and range of phenotypic values in a focal individual in a multi-member model analyzing three possible classes of interactions between individuals. We show that social interactions may not only cause indirect genetic effects but can also modify direct genetic effects. Furthermore, we demonstrate that both direct and indirect genetic effects substantially alter the range of phenotypic values, particularly when a focal trait can influence its own expression via interactions with traits in other individuals. We derive a function predicting the relative importance of direct versus indirect genetic effects. Our model reveals that both direct and indirect genetic effects can depend to a large extent on both group size and interaction strength, altering group mean phenotype and variance. This may lead to scenarios where between group variation is much higher than within group variation despite similar underlying genetic properties, potentially affecting the level of selection. Our analysis highlights key properties of indirect genetic effects with important consequences for trait evolution, the level of selection and potentially speciation. |
---|