Cargando…

Crystal Structure of Circular Permuted RoCBM21 (CP90): Dimerisation and Proximity of Binding Sites

Glucoamylases, containing starch-binding domains (SBD), have a wide range of scientific and industrial applications. Random mutagenesis and DNA shuffling of the gene encoding a starch-binding domain have resulted in only minor improvements in the affinities of the corresponding protein to their liga...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephen, Preyesh, Cheng, Kuo-Chang, Lyu, Ping-Chiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511584/
https://www.ncbi.nlm.nih.gov/pubmed/23226294
http://dx.doi.org/10.1371/journal.pone.0050488
Descripción
Sumario:Glucoamylases, containing starch-binding domains (SBD), have a wide range of scientific and industrial applications. Random mutagenesis and DNA shuffling of the gene encoding a starch-binding domain have resulted in only minor improvements in the affinities of the corresponding protein to their ligands, whereas circular permutation of the RoCBM21 substantially improved its binding affinity and selectivity towards longer-chain carbohydrates. For the study reported herein, we used a standard soluble ligand (amylose EX-I) to characterize the functional and structural aspects of circularly permuted RoCBM21 (CP90). Site-directed mutagenesis and the analysis of crystal structure reveal the dimerisation and an altered binding path, which may be responsible for improved affinity and altered selectivity of this newly created starch-binding domain. The functional and structural characterization of CP90 suggests that it has significant potential in industrial applications.