Cargando…
Gene Silencing Mediated by siRNA-binding Fusion Proteins Is Attenuated by Double-stranded RNA-binding Domain Structure
Delivery of small interfering RNA (siRNA) targeted to specific cell types is a significant challenge for the development of RNA interference-based therapeutics. Recently, PTD-DRBD, a double-stranded RNA binding domain (DRBD) fused to the TAT protein transduction domain (PTD), was shown to be effecti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511671/ https://www.ncbi.nlm.nih.gov/pubmed/23629028 http://dx.doi.org/10.1038/mtna.2012.43 |
Sumario: | Delivery of small interfering RNA (siRNA) targeted to specific cell types is a significant challenge for the development of RNA interference-based therapeutics. Recently, PTD-DRBD, a double-stranded RNA binding domain (DRBD) fused to the TAT protein transduction domain (PTD), was shown to be effective at delivering siRNA in a non-cell type-specific manner. Here, we evaluated the potential of DRBD as a general protein platform for targeted small interfering RNA (siRNA) delivery. We found that a single DRBD was insufficient to stably complex siRNA when fused to targeting peptides other than PTD, which facilitated nonspecific nucleic acid binding. In contrast to PTD-DRBD, fusion proteins containing two DRBDs (2× DRBD) yielded specific and stable siRNA binding. These proteins could mediate the cellular uptake of siRNA in vitro, though compared with PTD-DRBD gene silencing was attenuated by endosomal entrapment. Our findings suggest that unlike a single DRBD, 2× DRBD inhibits siRNA escape into the cytoplasm and/or induces an internalization pathway distinct from that of PTD-DRBD. Collectively, these data indicate that while 2× DRBD retains siRNA-binding activity when fused to different cell surface-interacting peptides, the utility of 2× DRBD for cell-specific RNA interference is limited without further protein engineering to enhance the bioavailability of the delivered siRNAs. |
---|