Cargando…
Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms
Key aspects of cardiac electrophysiology, such as slow conduction, conduction block, and saltatory effects have been the research topic of many studies since they are strongly related to cardiac arrhythmia, reentry, fibrillation, or defibrillation. However, to reproduce these phenomena the numerical...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512298/ https://www.ncbi.nlm.nih.gov/pubmed/23227109 http://dx.doi.org/10.1155/2012/824569 |
_version_ | 1782251700855242752 |
---|---|
author | Gouvêa de Barros, Bruno Sachetto Oliveira, Rafael Meira, Wagner Lobosco, Marcelo Weber dos Santos, Rodrigo |
author_facet | Gouvêa de Barros, Bruno Sachetto Oliveira, Rafael Meira, Wagner Lobosco, Marcelo Weber dos Santos, Rodrigo |
author_sort | Gouvêa de Barros, Bruno |
collection | PubMed |
description | Key aspects of cardiac electrophysiology, such as slow conduction, conduction block, and saltatory effects have been the research topic of many studies since they are strongly related to cardiac arrhythmia, reentry, fibrillation, or defibrillation. However, to reproduce these phenomena the numerical models need to use subcellular discretization for the solution of the PDEs and nonuniform, heterogeneous tissue electric conductivity. Due to the high computational costs of simulations that reproduce the fine microstructure of cardiac tissue, previous studies have considered tissue experiments of small or moderate sizes and used simple cardiac cell models. In this paper, we develop a cardiac electrophysiology model that captures the microstructure of cardiac tissue by using a very fine spatial discretization (8 μm) and uses a very modern and complex cell model based on Markov chains for the characterization of ion channel's structure and dynamics. To cope with the computational challenges, the model was parallelized using a hybrid approach: cluster computing and GPGPUs (general-purpose computing on graphics processing units). Our parallel implementation of this model using a multi-GPU platform was able to reduce the execution times of the simulations from more than 6 days (on a single processor) to 21 minutes (on a small 8-node cluster equipped with 16 GPUs, i.e., 2 GPUs per node). |
format | Online Article Text |
id | pubmed-3512298 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-35122982012-12-07 Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms Gouvêa de Barros, Bruno Sachetto Oliveira, Rafael Meira, Wagner Lobosco, Marcelo Weber dos Santos, Rodrigo Comput Math Methods Med Research Article Key aspects of cardiac electrophysiology, such as slow conduction, conduction block, and saltatory effects have been the research topic of many studies since they are strongly related to cardiac arrhythmia, reentry, fibrillation, or defibrillation. However, to reproduce these phenomena the numerical models need to use subcellular discretization for the solution of the PDEs and nonuniform, heterogeneous tissue electric conductivity. Due to the high computational costs of simulations that reproduce the fine microstructure of cardiac tissue, previous studies have considered tissue experiments of small or moderate sizes and used simple cardiac cell models. In this paper, we develop a cardiac electrophysiology model that captures the microstructure of cardiac tissue by using a very fine spatial discretization (8 μm) and uses a very modern and complex cell model based on Markov chains for the characterization of ion channel's structure and dynamics. To cope with the computational challenges, the model was parallelized using a hybrid approach: cluster computing and GPGPUs (general-purpose computing on graphics processing units). Our parallel implementation of this model using a multi-GPU platform was able to reduce the execution times of the simulations from more than 6 days (on a single processor) to 21 minutes (on a small 8-node cluster equipped with 16 GPUs, i.e., 2 GPUs per node). Hindawi Publishing Corporation 2012 2012-11-25 /pmc/articles/PMC3512298/ /pubmed/23227109 http://dx.doi.org/10.1155/2012/824569 Text en Copyright © 2012 Bruno Gouvêa de Barros et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gouvêa de Barros, Bruno Sachetto Oliveira, Rafael Meira, Wagner Lobosco, Marcelo Weber dos Santos, Rodrigo Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms |
title | Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms |
title_full | Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms |
title_fullStr | Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms |
title_full_unstemmed | Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms |
title_short | Simulations of Complex and Microscopic Models of Cardiac Electrophysiology Powered by Multi-GPU Platforms |
title_sort | simulations of complex and microscopic models of cardiac electrophysiology powered by multi-gpu platforms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512298/ https://www.ncbi.nlm.nih.gov/pubmed/23227109 http://dx.doi.org/10.1155/2012/824569 |
work_keys_str_mv | AT gouveadebarrosbruno simulationsofcomplexandmicroscopicmodelsofcardiacelectrophysiologypoweredbymultigpuplatforms AT sachettooliveirarafael simulationsofcomplexandmicroscopicmodelsofcardiacelectrophysiologypoweredbymultigpuplatforms AT meirawagner simulationsofcomplexandmicroscopicmodelsofcardiacelectrophysiologypoweredbymultigpuplatforms AT loboscomarcelo simulationsofcomplexandmicroscopicmodelsofcardiacelectrophysiologypoweredbymultigpuplatforms AT weberdossantosrodrigo simulationsofcomplexandmicroscopicmodelsofcardiacelectrophysiologypoweredbymultigpuplatforms |