Cargando…

Phytochemicals Attenuating Aberrant Activation of β-Catenin in Cancer Cells

Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/β-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of β-catenin, a key causative step in a broad spectrum of c...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dan, Wise, Mitchell L., Li, Feng, Dey, Moul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513294/
https://www.ncbi.nlm.nih.gov/pubmed/23226522
http://dx.doi.org/10.1371/journal.pone.0050508
Descripción
Sumario:Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/β-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of β-catenin, a key causative step in a broad spectrum of cancers. Here we report the modulation of lithium chloride-activated canonical Wnt/β-catenin signaling by phytochemicals that have antioxidant, anti-inflammatory or chemopreventive properties. The compounds were first screened with a cervical cancer-derived stable Wnt signaling reporter HeLa cell line. Positive hits were subsequently evaluated for β-catenin degradation, suppression of β-catenin nuclear localization and down-regulation of downstream oncogenic targets of Wnt/β-catenin pathway. Our study shows a novel degradation path of β-catenin protein in HeLa cells by Avenanthramide 2p (a polyphenol) and Triptolide (a diterpene triepoxide), respectively from oats and a Chinese medicinal plant. The findings present Avenanthramide 2p as a potential chemopreventive dietary compound that merits further study using in vivo models of cancers; they also provide a new perspective on the mechanism of action of Triptolide.