Cargando…

A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations

Identifying the kinesin motors that interact with different vesicle populations is a longstanding and challenging problem with implications for many aspects of cell biology. Here we introduce a new live-cell assay to assess kinesin–vesicle interactions and use it to identify kinesins that bind to ve...

Descripción completa

Detalles Bibliográficos
Autores principales: Jenkins, Brian, Decker, Helena, Bentley, Marvin, Luisi, Julie, Banker, Gary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514038/
https://www.ncbi.nlm.nih.gov/pubmed/22908316
http://dx.doi.org/10.1083/jcb.201205070
Descripción
Sumario:Identifying the kinesin motors that interact with different vesicle populations is a longstanding and challenging problem with implications for many aspects of cell biology. Here we introduce a new live-cell assay to assess kinesin–vesicle interactions and use it to identify kinesins that bind to vesicles undergoing dendrite-selective transport in cultured hippocampal neurons. We prepared a library of “split kinesins,” comprising an axon-selective kinesin motor domain and a series of kinesin tail domains that can attach to their native vesicles; when the split kinesins were assembled by chemical dimerization, bound vesicles were misdirected into the axon. This method provided highly specific results, showing that three Kinesin-3 family members—KIF1A, KIF13A, and KIF13B—interacted with dendritic vesicle populations. This experimental paradigm allows a systematic approach to evaluate motor–vesicle interactions in living cells.