Cargando…
A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors
BACKGROUND: Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical fl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514147/ https://www.ncbi.nlm.nih.gov/pubmed/23083397 http://dx.doi.org/10.1186/1532-429X-14-72 |
_version_ | 1782251976119025664 |
---|---|
author | Gatehouse, Peter D Rolf, Marijn P Bloch, Karin Markenroth Graves, Martin J Kilner, Philip J Firmin, David N Hofman, Mark BM |
author_facet | Gatehouse, Peter D Rolf, Marijn P Bloch, Karin Markenroth Graves, Martin J Kilner, Philip J Firmin, David N Hofman, Mark BM |
author_sort | Gatehouse, Peter D |
collection | PubMed |
description | BACKGROUND: Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical flow acquisition using a uniform stationary phantom, in order to measure the baseline offset at the region of interest and subtract it from the clinical study. Such techniques assume that the background offset is stable over the time of a patient scan, or even longer if the phantom scans are acquired later, or derived from pre-stored background correction images. There is no published evidence regarding temporal stability of the background offset. METHODS: This study assessed the temporal stability of the background offset on 3 different manufacturers’ scanners over 8 weeks, using a retrospectively-gated phase-contrast cine acquisition with fixed parameters and at a fixed location, repeated 5 times in rapid succession each week. A significant offset was defined as 0.6 cm/s within 50 mm of isocenter, based upon an accuracy of 10% in a typical cardiac shunt measurement. RESULTS: Over the 5 repeated cine acquisitions, temporal drift in the baseline offset was insignificant on two machines (0.3 cm/s, 0.2 cm/s), and marginally insignificant on the third machine (0.5 cm/s) due to an apparent heating effect. Over a longer timescale of 8 weeks, insignificant drift (0.4 cm/s) occurred on one, with larger drifts (0.9 cm/s, 0.6 cm/s) on the other machines. CONCLUSIONS: During a typical patient study, background drift was insignificant. Extended high gradient power scanning with work requires care to avoid drift on some machines. Over the longer term of 8 weeks, significant drift is likely, preventing accurate correction by delayed phantom corrections or derivation from pre-stored background offset data. |
format | Online Article Text |
id | pubmed-3514147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35141472012-12-05 A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors Gatehouse, Peter D Rolf, Marijn P Bloch, Karin Markenroth Graves, Martin J Kilner, Philip J Firmin, David N Hofman, Mark BM J Cardiovasc Magn Reson Technical Notes BACKGROUND: Phase-contrast velocity images often contain a background or baseline offset error, which adds an unknown offset to the measured velocities. For accurate flow measurements, this offset must be shown negligible or corrected. Some correction techniques depend on replicating the clinical flow acquisition using a uniform stationary phantom, in order to measure the baseline offset at the region of interest and subtract it from the clinical study. Such techniques assume that the background offset is stable over the time of a patient scan, or even longer if the phantom scans are acquired later, or derived from pre-stored background correction images. There is no published evidence regarding temporal stability of the background offset. METHODS: This study assessed the temporal stability of the background offset on 3 different manufacturers’ scanners over 8 weeks, using a retrospectively-gated phase-contrast cine acquisition with fixed parameters and at a fixed location, repeated 5 times in rapid succession each week. A significant offset was defined as 0.6 cm/s within 50 mm of isocenter, based upon an accuracy of 10% in a typical cardiac shunt measurement. RESULTS: Over the 5 repeated cine acquisitions, temporal drift in the baseline offset was insignificant on two machines (0.3 cm/s, 0.2 cm/s), and marginally insignificant on the third machine (0.5 cm/s) due to an apparent heating effect. Over a longer timescale of 8 weeks, insignificant drift (0.4 cm/s) occurred on one, with larger drifts (0.9 cm/s, 0.6 cm/s) on the other machines. CONCLUSIONS: During a typical patient study, background drift was insignificant. Extended high gradient power scanning with work requires care to avoid drift on some machines. Over the longer term of 8 weeks, significant drift is likely, preventing accurate correction by delayed phantom corrections or derivation from pre-stored background offset data. BioMed Central 2012-10-20 /pmc/articles/PMC3514147/ /pubmed/23083397 http://dx.doi.org/10.1186/1532-429X-14-72 Text en Copyright ©2012 Gatehouse et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technical Notes Gatehouse, Peter D Rolf, Marijn P Bloch, Karin Markenroth Graves, Martin J Kilner, Philip J Firmin, David N Hofman, Mark BM A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors |
title | A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors |
title_full | A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors |
title_fullStr | A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors |
title_full_unstemmed | A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors |
title_short | A multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors |
title_sort | multi-center inter-manufacturer study of the temporal stability of phase-contrast velocity mapping background offset errors |
topic | Technical Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514147/ https://www.ncbi.nlm.nih.gov/pubmed/23083397 http://dx.doi.org/10.1186/1532-429X-14-72 |
work_keys_str_mv | AT gatehousepeterd amulticenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT rolfmarijnp amulticenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT blochkarinmarkenroth amulticenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT gravesmartinj amulticenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT kilnerphilipj amulticenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT firmindavidn amulticenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT hofmanmarkbm amulticenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT gatehousepeterd multicenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT rolfmarijnp multicenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT blochkarinmarkenroth multicenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT gravesmartinj multicenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT kilnerphilipj multicenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT firmindavidn multicenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors AT hofmanmarkbm multicenterintermanufacturerstudyofthetemporalstabilityofphasecontrastvelocitymappingbackgroundoffseterrors |