Cargando…

Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets

BACKGROUND: The number and diversity of uncultured ruminal bacterial and archaeal species revealed by 16S rRNA gene (rrs) sequences greatly exceeds that of cultured bacteria and archaea. However, the significance of uncultured microbes remains undetermined. The objective of this study was to assess...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Minseok, Yu, Zhongtang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514218/
https://www.ncbi.nlm.nih.gov/pubmed/22958370
http://dx.doi.org/10.1186/2049-1891-3-28
Descripción
Sumario:BACKGROUND: The number and diversity of uncultured ruminal bacterial and archaeal species revealed by 16S rRNA gene (rrs) sequences greatly exceeds that of cultured bacteria and archaea. However, the significance of uncultured microbes remains undetermined. The objective of this study was to assess the numeric importance of select uncultured bacteria and cultured bacteria and the impact of diets and microenvironments within cow rumen in a comparative manner. RESULTS: Liquid and adherent fractions were obtained from the rumen of Jersey cattle fed hay alone and Holstein cattle fed hay plus grain. The populations of cultured and uncultured bacteria present in each fraction were quantified using specific real-time PCR assays. The population of total bacteria was similar between fractions or diets, while total archaea was numerically higher in the hay-fed Jersey cattle than in the hay-grain-fed Holstein cattle. The population of the genus Prevotella was about one log smaller than that of total bacteria. The populations of Fibrobacter succinogenes, Ruminococcus flavefaciens, the genus Butyrivibrio, and R. albus was at least one log smaller than that of genus Prevotella. Four of the six uncultured bacteria quantified were as abundant as F. succinogenes, R. flavefaciens and the genus Butyrivibrio. In addition, the populations of several uncultured bacteria were significantly higher in the adherent fractions than in the liquid fractions. These uncultured bacteria may be associated with fiber degradation. CONCLUSIONS: Some uncultured bacteria are as abundant as those of major cultured bacteria in the rumen. Uncultured bacteria may have important contribution to ruminal fermentation. Population dynamic studies of uncultured bacteria in a comparative manner can help reveal their ecological features and importance to rumen functions.