Cargando…
Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols
Inhalation treatment with nanoparticle containing aerosols appears a promising new therapeutic option but new formulations have to be assessed for efficacy and toxicity. We evaluated the utility of a VITROCELL®6 PT-CF + PARI LC SPRINT® Baby Nebulizer (PARI BOY) system compared with a conventional Mi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514486/ https://www.ncbi.nlm.nih.gov/pubmed/22906573 http://dx.doi.org/10.1016/j.tiv.2012.08.008 |
_version_ | 1782252045198163968 |
---|---|
author | Fröhlich, Eleonore Bonstingl, Gudrun Höfler, Anita Meindl, Claudia Leitinger, Gerd Pieber, Thomas R. Roblegg, Eva |
author_facet | Fröhlich, Eleonore Bonstingl, Gudrun Höfler, Anita Meindl, Claudia Leitinger, Gerd Pieber, Thomas R. Roblegg, Eva |
author_sort | Fröhlich, Eleonore |
collection | PubMed |
description | Inhalation treatment with nanoparticle containing aerosols appears a promising new therapeutic option but new formulations have to be assessed for efficacy and toxicity. We evaluated the utility of a VITROCELL®6 PT-CF + PARI LC SPRINT® Baby Nebulizer (PARI BOY) system compared with a conventional MicroSprayer. A549 cells were cultured in the air–liquid interface, exposed to nanoparticle aerosols and characterized by measurement of transepithelial electrical resistance and staining for tight junction proteins. Deposition and distribution rates of polystyrene particles and of carbon nanotubes on the cells were assessed. In addition, cytotoxicity of aerosols containing polystyrene particles was compared with cytotoxicity of polystyrene particles in suspension tested in submersed cultures. Exposure by itself in both exposure systems did not damage the cells. Deposition rates of aerosolized polystyrene particles were about 700 times and that of carbon nanotubes about 4 times higher in the MicroSprayer than in the VITROCELL®6 PT-CF system. Cytotoxicity of amine-functionalized polystyrene nanoparticles was significantly higher when applied as an aerosol on cell cultured in air–liquid interface culture compared with nanoparticle suspensions tested in submersed culture. The higher cytotoxicity of aerosolized nanoparticles underscores the importance of relevant exposure systems. |
format | Online Article Text |
id | pubmed-3514486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Pergamon Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35144862013-02-01 Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols Fröhlich, Eleonore Bonstingl, Gudrun Höfler, Anita Meindl, Claudia Leitinger, Gerd Pieber, Thomas R. Roblegg, Eva Toxicol In Vitro Article Inhalation treatment with nanoparticle containing aerosols appears a promising new therapeutic option but new formulations have to be assessed for efficacy and toxicity. We evaluated the utility of a VITROCELL®6 PT-CF + PARI LC SPRINT® Baby Nebulizer (PARI BOY) system compared with a conventional MicroSprayer. A549 cells were cultured in the air–liquid interface, exposed to nanoparticle aerosols and characterized by measurement of transepithelial electrical resistance and staining for tight junction proteins. Deposition and distribution rates of polystyrene particles and of carbon nanotubes on the cells were assessed. In addition, cytotoxicity of aerosols containing polystyrene particles was compared with cytotoxicity of polystyrene particles in suspension tested in submersed cultures. Exposure by itself in both exposure systems did not damage the cells. Deposition rates of aerosolized polystyrene particles were about 700 times and that of carbon nanotubes about 4 times higher in the MicroSprayer than in the VITROCELL®6 PT-CF system. Cytotoxicity of amine-functionalized polystyrene nanoparticles was significantly higher when applied as an aerosol on cell cultured in air–liquid interface culture compared with nanoparticle suspensions tested in submersed culture. The higher cytotoxicity of aerosolized nanoparticles underscores the importance of relevant exposure systems. Pergamon Press 2013-02 /pmc/articles/PMC3514486/ /pubmed/22906573 http://dx.doi.org/10.1016/j.tiv.2012.08.008 Text en © 2013 Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Fröhlich, Eleonore Bonstingl, Gudrun Höfler, Anita Meindl, Claudia Leitinger, Gerd Pieber, Thomas R. Roblegg, Eva Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols |
title | Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols |
title_full | Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols |
title_fullStr | Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols |
title_full_unstemmed | Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols |
title_short | Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols |
title_sort | comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514486/ https://www.ncbi.nlm.nih.gov/pubmed/22906573 http://dx.doi.org/10.1016/j.tiv.2012.08.008 |
work_keys_str_mv | AT frohlicheleonore comparisonoftwoinvitrosystemstoassesscellulareffectsofnanoparticlescontainingaerosols AT bonstinglgudrun comparisonoftwoinvitrosystemstoassesscellulareffectsofnanoparticlescontainingaerosols AT hofleranita comparisonoftwoinvitrosystemstoassesscellulareffectsofnanoparticlescontainingaerosols AT meindlclaudia comparisonoftwoinvitrosystemstoassesscellulareffectsofnanoparticlescontainingaerosols AT leitingergerd comparisonoftwoinvitrosystemstoassesscellulareffectsofnanoparticlescontainingaerosols AT pieberthomasr comparisonoftwoinvitrosystemstoassesscellulareffectsofnanoparticlescontainingaerosols AT robleggeva comparisonoftwoinvitrosystemstoassesscellulareffectsofnanoparticlescontainingaerosols |