Cargando…

Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage

Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications such as hydrogen production, enhanced catalytic activity, and electrochemical energy storage and conversion. Herein, we report the synthesis of mesoporous NiO crystals with dominantly expose...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Dawei, Ford, Mike, Wang, Guoxiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514642/
https://www.ncbi.nlm.nih.gov/pubmed/23226591
http://dx.doi.org/10.1038/srep00924
Descripción
Sumario:Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications such as hydrogen production, enhanced catalytic activity, and electrochemical energy storage and conversion. Herein, we report the synthesis of mesoporous NiO crystals with dominantly exposed {110} reactive facets by the thermal conversion of hexagonal Ni(OH)(2) nanoplatelets. When applied as anode materials in lithium-ion batteries, mesoporous NiO crystals exhibit a high reversible lithium storage capacity of 700 mAh g(−1) at 1 C rate in 100 cycles and an excellent cyclability. In particular, the dominantly exposed {110} reactive facets and mesoporous nanostructure of NiO crystals lead to ultrafast lithium storage, which mimics the high power delivery of supercapacitors.