Cargando…
Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel
Traditional drug delivery systems which are based on multiple dosing regimens usually pose many disadvantages such as poor compliance of patients and drug plasma level variation. To overcome the obstacles of traditional drug formulations, novel drug delivery system PCL-PEG-PCL hydrogels have been pu...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scholarly Research Network
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514828/ https://www.ncbi.nlm.nih.gov/pubmed/23227366 http://dx.doi.org/10.5402/2012/976879 |
_version_ | 1782252085013643264 |
---|---|
author | Khodaverdi, Elham Golmohammadian, Ali Mohajeri, Seyed Ahmad Zohuri, Gholamhossein Mirzazadeh Tekie, Farnaz Sadat Hadizadeh, Farzin |
author_facet | Khodaverdi, Elham Golmohammadian, Ali Mohajeri, Seyed Ahmad Zohuri, Gholamhossein Mirzazadeh Tekie, Farnaz Sadat Hadizadeh, Farzin |
author_sort | Khodaverdi, Elham |
collection | PubMed |
description | Traditional drug delivery systems which are based on multiple dosing regimens usually pose many disadvantages such as poor compliance of patients and drug plasma level variation. To overcome the obstacles of traditional drug formulations, novel drug delivery system PCL-PEG-PCL hydrogels have been purposed in this study. Copolymers were synthesized by rapid microwave-assisted and conventional synthesis methods. Polymer characterizations were done using gel permeation chromatography and (1)H-NMR. Phase transition behavior was evaluated by inverting tube method and in vitro drug release profile was determined using naltrexone hydrochloride and vitamin B(12) as drug models. The results indicated that loaded drug structure and copolymer concentration play critical roles in release profile of drugs from these hydrogels. This study also confirmed that synthesis of copolymer using microwave is the most effective method for synthesis of this kind of copolymer. |
format | Online Article Text |
id | pubmed-3514828 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | International Scholarly Research Network |
record_format | MEDLINE/PubMed |
spelling | pubmed-35148282012-12-07 Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel Khodaverdi, Elham Golmohammadian, Ali Mohajeri, Seyed Ahmad Zohuri, Gholamhossein Mirzazadeh Tekie, Farnaz Sadat Hadizadeh, Farzin ISRN Pharm Research Article Traditional drug delivery systems which are based on multiple dosing regimens usually pose many disadvantages such as poor compliance of patients and drug plasma level variation. To overcome the obstacles of traditional drug formulations, novel drug delivery system PCL-PEG-PCL hydrogels have been purposed in this study. Copolymers were synthesized by rapid microwave-assisted and conventional synthesis methods. Polymer characterizations were done using gel permeation chromatography and (1)H-NMR. Phase transition behavior was evaluated by inverting tube method and in vitro drug release profile was determined using naltrexone hydrochloride and vitamin B(12) as drug models. The results indicated that loaded drug structure and copolymer concentration play critical roles in release profile of drugs from these hydrogels. This study also confirmed that synthesis of copolymer using microwave is the most effective method for synthesis of this kind of copolymer. International Scholarly Research Network 2012-11-27 /pmc/articles/PMC3514828/ /pubmed/23227366 http://dx.doi.org/10.5402/2012/976879 Text en Copyright © 2012 Elham Khodaverdi et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Khodaverdi, Elham Golmohammadian, Ali Mohajeri, Seyed Ahmad Zohuri, Gholamhossein Mirzazadeh Tekie, Farnaz Sadat Hadizadeh, Farzin Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel |
title | Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel |
title_full | Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel |
title_fullStr | Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel |
title_full_unstemmed | Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel |
title_short | Biodegradable In Situ Gel-Forming Controlled Drug Delivery System Based on Thermosensitive Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) Hydrogel |
title_sort | biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hydrogel |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514828/ https://www.ncbi.nlm.nih.gov/pubmed/23227366 http://dx.doi.org/10.5402/2012/976879 |
work_keys_str_mv | AT khodaverdielham biodegradableinsitugelformingcontrolleddrugdeliverysystembasedonthermosensitivepolyecaprolactonepolyethyleneglycolpolyecaprolactonehydrogel AT golmohammadianali biodegradableinsitugelformingcontrolleddrugdeliverysystembasedonthermosensitivepolyecaprolactonepolyethyleneglycolpolyecaprolactonehydrogel AT mohajeriseyedahmad biodegradableinsitugelformingcontrolleddrugdeliverysystembasedonthermosensitivepolyecaprolactonepolyethyleneglycolpolyecaprolactonehydrogel AT zohurigholamhossein biodegradableinsitugelformingcontrolleddrugdeliverysystembasedonthermosensitivepolyecaprolactonepolyethyleneglycolpolyecaprolactonehydrogel AT mirzazadehtekiefarnazsadat biodegradableinsitugelformingcontrolleddrugdeliverysystembasedonthermosensitivepolyecaprolactonepolyethyleneglycolpolyecaprolactonehydrogel AT hadizadehfarzin biodegradableinsitugelformingcontrolleddrugdeliverysystembasedonthermosensitivepolyecaprolactonepolyethyleneglycolpolyecaprolactonehydrogel |