Cargando…
Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria
Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515520/ https://www.ncbi.nlm.nih.gov/pubmed/23227229 http://dx.doi.org/10.1371/journal.pone.0051023 |
_version_ | 1782252199384973312 |
---|---|
author | Drew, Damien R. Hodder, Anthony N. Wilson, Danny W. Foley, Michael Mueller, Ivo Siba, Peter M. Dent, Arlene E. Cowman, Alan F. Beeson, James G. |
author_facet | Drew, Damien R. Hodder, Anthony N. Wilson, Danny W. Foley, Michael Mueller, Ivo Siba, Peter M. Dent, Arlene E. Cowman, Alan F. Beeson, James G. |
author_sort | Drew, Damien R. |
collection | PubMed |
description | Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic diversity limits cross-strain growth inhibition, we assembled a panel of 18 different P. falciparum isolates which are broadly representative of global AMA1 sequence diversity. Antibodies raised against four well studied AMA1 alleles (W2Mef, 3D7, HB3 and FVO) were tested for growth inhibition of the 18 different P. falciparum isolates in growth inhibition assays (GIA). All antibodies demonstrated substantial cross-inhibitory activity against different isolates and a mixture of the four different AMA1 antibodies inhibited all 18 isolates tested, suggesting significant antigenic overlap between AMA1 alleles and limited antigenic diversity of AMA1. Cross-strain inhibition by antibodies was only moderately and inconsistently correlated with the level of sequence diversity between AMA1 alleles, suggesting that sequence differences are not a strong predictor of antigenic differences or the cross-inhibitory activity of anti-allele antibodies. The importance of the highly polymorphic C1-L region for inhibitory antibodies and potential vaccine escape was assessed by generating novel transgenic P. falciparum lines for testing in GIA. While the polymorphic C1-L epitope was identified as a significant target of some growth-inhibitory antibodies, these antibodies only constituted a minor proportion of the total inhibitory antibody repertoire, suggesting that the antigenic diversity of inhibitory epitopes is limited. Our findings support the concept that a multi-allele AMA1 vaccine would give broad coverage against the diversity of AMA1 alleles and establish new tools to define polymorphisms important for vaccine escape. |
format | Online Article Text |
id | pubmed-3515520 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35155202012-12-07 Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria Drew, Damien R. Hodder, Anthony N. Wilson, Danny W. Foley, Michael Mueller, Ivo Siba, Peter M. Dent, Arlene E. Cowman, Alan F. Beeson, James G. PLoS One Research Article Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic diversity limits cross-strain growth inhibition, we assembled a panel of 18 different P. falciparum isolates which are broadly representative of global AMA1 sequence diversity. Antibodies raised against four well studied AMA1 alleles (W2Mef, 3D7, HB3 and FVO) were tested for growth inhibition of the 18 different P. falciparum isolates in growth inhibition assays (GIA). All antibodies demonstrated substantial cross-inhibitory activity against different isolates and a mixture of the four different AMA1 antibodies inhibited all 18 isolates tested, suggesting significant antigenic overlap between AMA1 alleles and limited antigenic diversity of AMA1. Cross-strain inhibition by antibodies was only moderately and inconsistently correlated with the level of sequence diversity between AMA1 alleles, suggesting that sequence differences are not a strong predictor of antigenic differences or the cross-inhibitory activity of anti-allele antibodies. The importance of the highly polymorphic C1-L region for inhibitory antibodies and potential vaccine escape was assessed by generating novel transgenic P. falciparum lines for testing in GIA. While the polymorphic C1-L epitope was identified as a significant target of some growth-inhibitory antibodies, these antibodies only constituted a minor proportion of the total inhibitory antibody repertoire, suggesting that the antigenic diversity of inhibitory epitopes is limited. Our findings support the concept that a multi-allele AMA1 vaccine would give broad coverage against the diversity of AMA1 alleles and establish new tools to define polymorphisms important for vaccine escape. Public Library of Science 2012-12-05 /pmc/articles/PMC3515520/ /pubmed/23227229 http://dx.doi.org/10.1371/journal.pone.0051023 Text en © 2012 Drew et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Drew, Damien R. Hodder, Anthony N. Wilson, Danny W. Foley, Michael Mueller, Ivo Siba, Peter M. Dent, Arlene E. Cowman, Alan F. Beeson, James G. Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria |
title | Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria |
title_full | Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria |
title_fullStr | Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria |
title_full_unstemmed | Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria |
title_short | Defining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria |
title_sort | defining the antigenic diversity of plasmodium falciparum apical membrane antigen 1 and the requirements for a multi-allele vaccine against malaria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515520/ https://www.ncbi.nlm.nih.gov/pubmed/23227229 http://dx.doi.org/10.1371/journal.pone.0051023 |
work_keys_str_mv | AT drewdamienr definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT hodderanthonyn definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT wilsondannyw definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT foleymichael definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT muellerivo definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT sibapeterm definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT dentarlenee definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT cowmanalanf definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria AT beesonjamesg definingtheantigenicdiversityofplasmodiumfalciparumapicalmembraneantigen1andtherequirementsforamultiallelevaccineagainstmalaria |