Cargando…
Gene Expression Profiles for Predicting Metastasis in Breast Cancer: A Cross-Study Comparison of Classification Methods
Machine learning has increasingly been used with microarray gene expression data and for the development of classifiers using a variety of methods. However, method comparisons in cross-study datasets are very scarce. This study compares the performance of seven classification methods and the effect...
Autores principales: | Burton, Mark, Thomassen, Mads, Tan, Qihua, Kruse, Torben A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific World Journal
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515909/ https://www.ncbi.nlm.nih.gov/pubmed/23251101 http://dx.doi.org/10.1100/2012/380495 |
Ejemplares similares
-
Prediction of Breast Cancer Metastasis by Gene Expression Profiles: A Comparison of Metagenes and Single Genes
por: Burton, Mark, et al.
Publicado: (2012) -
Gene Expression Meta-Analysis Identifies Cytokine Pathways and 5q Aberrations Involved in Metastasis of ERBB2 Amplified and Basal Breast Cancer
por: Thomassen, Mads, et al.
Publicado: (2013) -
Long non-coding RNA expression profiles predict metastasis in lymph node-negative breast cancer independently of traditional prognostic markers
por: Sørensen, Kristina P, et al.
Publicado: (2015) -
Comparison of the Metastasis Predictive Potential of mRNA and Long Non-Coding RNA Profiling in Systemically Untreated Breast Cancer
por: Do, Thi T. N., et al.
Publicado: (2021) -
Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer
por: Thomassen, Mads, et al.
Publicado: (2008)