Cargando…
Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited
Sunlight, the ultimate energy source for life on our planet, enters the biosphere as a direct consequence of the evolution of photoautotrophy. Photoautotrophs must balance the light energy absorbed and trapped through extremely fast, temperature-insensitive photochemistry with energy consumed throug...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515967/ https://www.ncbi.nlm.nih.gov/pubmed/23230444 http://dx.doi.org/10.3389/fpls.2012.00255 |
_version_ | 1782252256962281472 |
---|---|
author | Hüner, Norman P. A. Bode, Rainer Dahal, Keshav Hollis, Lauren Rosso, Dominic Krol, Marianna Ivanov, Alexander G. |
author_facet | Hüner, Norman P. A. Bode, Rainer Dahal, Keshav Hollis, Lauren Rosso, Dominic Krol, Marianna Ivanov, Alexander G. |
author_sort | Hüner, Norman P. A. |
collection | PubMed |
description | Sunlight, the ultimate energy source for life on our planet, enters the biosphere as a direct consequence of the evolution of photoautotrophy. Photoautotrophs must balance the light energy absorbed and trapped through extremely fast, temperature-insensitive photochemistry with energy consumed through much slower, temperature-dependent biochemistry and metabolism. The attainment of such a balance in cellular energy flow between chloroplasts, mitochondria and the cytosol is called photostasis. Photoautotrophs sense cellular energy imbalances through modulation of excitation pressure which is a measure of the relative redox state of Q(A), the first stable quinone electron acceptor of photosystem II reaction centers. High excitation pressure constitutes a potential stress condition that can be caused either by exposure to an irradiance that exceeds the capacity of C, N, and S assimilation to utilize the electrons generated from the absorbed energy or by low temperature or any stress that decreases the capacity of the metabolic pathways downstream of photochemistry to utilize photosynthetically generated reductants. The similarities and differences in the phenotypic responses between cyanobacteria, green algae, crop plants, and variegation mutants of Arabidopsis thaliana as a function of cold acclimation and photoacclimation are reconciled in terms of differential responses to excitation pressure and the predisposition of photoautotrophs to maintain photostasis. The various acclimation strategies associated with green algae and cyanobacteria versus winter cereals and A. thaliana are discussed in terms of retrograde regulation and the “grand design of photosynthesis” originally proposed by Arnon (1982). |
format | Online Article Text |
id | pubmed-3515967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-35159672012-12-10 Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited Hüner, Norman P. A. Bode, Rainer Dahal, Keshav Hollis, Lauren Rosso, Dominic Krol, Marianna Ivanov, Alexander G. Front Plant Sci Plant Science Sunlight, the ultimate energy source for life on our planet, enters the biosphere as a direct consequence of the evolution of photoautotrophy. Photoautotrophs must balance the light energy absorbed and trapped through extremely fast, temperature-insensitive photochemistry with energy consumed through much slower, temperature-dependent biochemistry and metabolism. The attainment of such a balance in cellular energy flow between chloroplasts, mitochondria and the cytosol is called photostasis. Photoautotrophs sense cellular energy imbalances through modulation of excitation pressure which is a measure of the relative redox state of Q(A), the first stable quinone electron acceptor of photosystem II reaction centers. High excitation pressure constitutes a potential stress condition that can be caused either by exposure to an irradiance that exceeds the capacity of C, N, and S assimilation to utilize the electrons generated from the absorbed energy or by low temperature or any stress that decreases the capacity of the metabolic pathways downstream of photochemistry to utilize photosynthetically generated reductants. The similarities and differences in the phenotypic responses between cyanobacteria, green algae, crop plants, and variegation mutants of Arabidopsis thaliana as a function of cold acclimation and photoacclimation are reconciled in terms of differential responses to excitation pressure and the predisposition of photoautotrophs to maintain photostasis. The various acclimation strategies associated with green algae and cyanobacteria versus winter cereals and A. thaliana are discussed in terms of retrograde regulation and the “grand design of photosynthesis” originally proposed by Arnon (1982). Frontiers Media S.A. 2012-11-20 /pmc/articles/PMC3515967/ /pubmed/23230444 http://dx.doi.org/10.3389/fpls.2012.00255 Text en Copyright © Hüner, Bode, Dahal, Hollis, Rosso, Krol and Ivanov. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Plant Science Hüner, Norman P. A. Bode, Rainer Dahal, Keshav Hollis, Lauren Rosso, Dominic Krol, Marianna Ivanov, Alexander G. Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited |
title | Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited |
title_full | Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited |
title_fullStr | Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited |
title_full_unstemmed | Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited |
title_short | Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited |
title_sort | chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515967/ https://www.ncbi.nlm.nih.gov/pubmed/23230444 http://dx.doi.org/10.3389/fpls.2012.00255 |
work_keys_str_mv | AT hunernormanpa chloroplastredoximbalancegovernsphenotypicplasticitythegranddesignofphotosynthesisrevisited AT boderainer chloroplastredoximbalancegovernsphenotypicplasticitythegranddesignofphotosynthesisrevisited AT dahalkeshav chloroplastredoximbalancegovernsphenotypicplasticitythegranddesignofphotosynthesisrevisited AT hollislauren chloroplastredoximbalancegovernsphenotypicplasticitythegranddesignofphotosynthesisrevisited AT rossodominic chloroplastredoximbalancegovernsphenotypicplasticitythegranddesignofphotosynthesisrevisited AT krolmarianna chloroplastredoximbalancegovernsphenotypicplasticitythegranddesignofphotosynthesisrevisited AT ivanovalexanderg chloroplastredoximbalancegovernsphenotypicplasticitythegranddesignofphotosynthesisrevisited |